

The measurement of the Boosted ttZ process

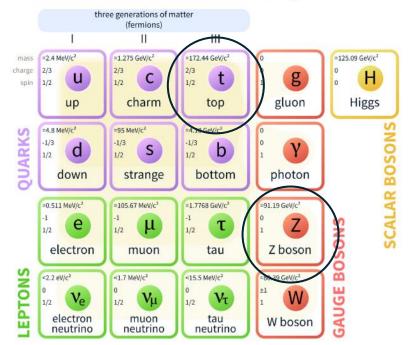
Chaimaa Karam*

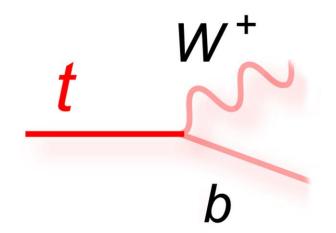
Supervisors: Nedaa-Alexandra Asbah (CERN) and Knut Zoch (Harvard)

August 9, 2024

The Top Quark in the Standard model

- Heaviest elementary particle, with a mass of 173 GeV/c²
- With charge **+2/3**.
- Discovered in 1995 by the CDF and DØ experiments at Fermilab's Tevatron collider.
- The **LHC** is a top quark factory and produces a large number of top quarks
 - This enables detailed and precise studies of the top quark's properties and interactions

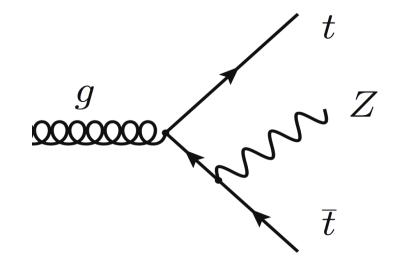

Yukawa Coupling


is proportional to the top mass, so it has the largest Yukawa coupling.

Lifetime of the Top Quark

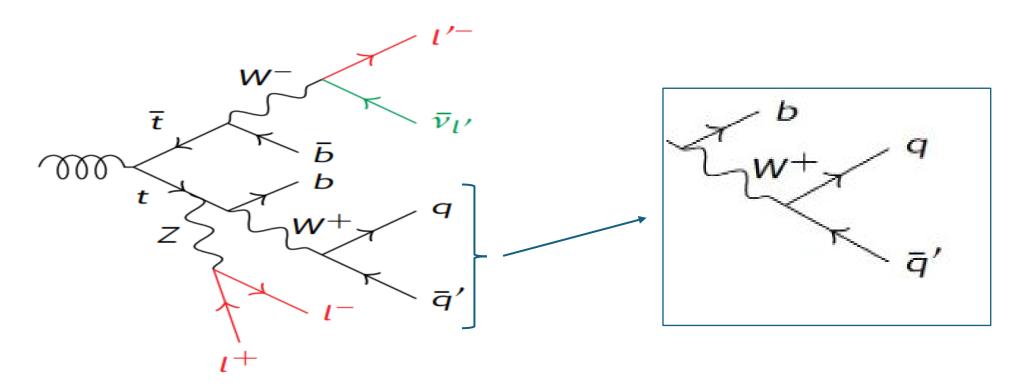
 Top quark has a very short lifetime. It decays before it can hadronize.

Standard Model of Elementary Particles



Why do we study ttZ?

The process ttZ involves the production of a top-antitop quark pair in association with a Z boson

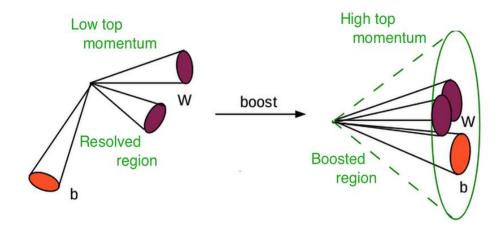

- Unique opportunity to study the electroweak interactions of the top quark.
- Precise measurements of the ttZ cross-section and kinematic distributions can test the Standard Model predictions and probe for potential anomalies or new physics.
- Allows direct measurement of the top quark's coupling to the Z boson.
- Sensitive to new physics effects parameterized within the Effective Field Theory (EFT) framework.

Overview of the Boosted ttZ Process 3l channel

Event:

- $3I: Z \rightarrow II$ (Same Flavor Opposite Sign) and $W \rightarrow IV$
- **2 b-jets:** from decays of the top quarks
- 2 light jets

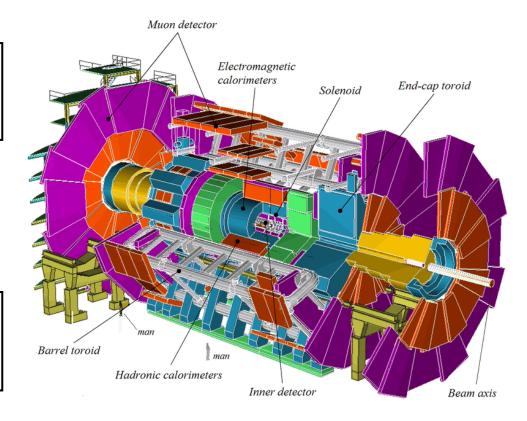

Overview of the Boosted ttZ Process 3I channel


Boosting:

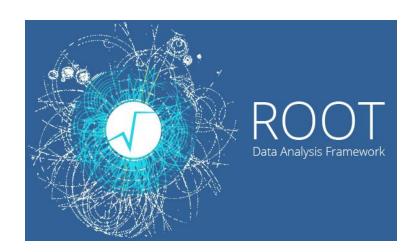
- high momentum
 - Decay products are not separated by large angles.
- Large Radius jets
 - Decay products are contained in a single large radius jet

RC jets:

- Using algorithm that re-combine small sub-jet into larger jets.
- Improve the identification and reconstruction of hadronically decaying boosted particles.


Full Simulation (FS) and Atlas Fast Simulation (AF3) in the ATLAS Detector

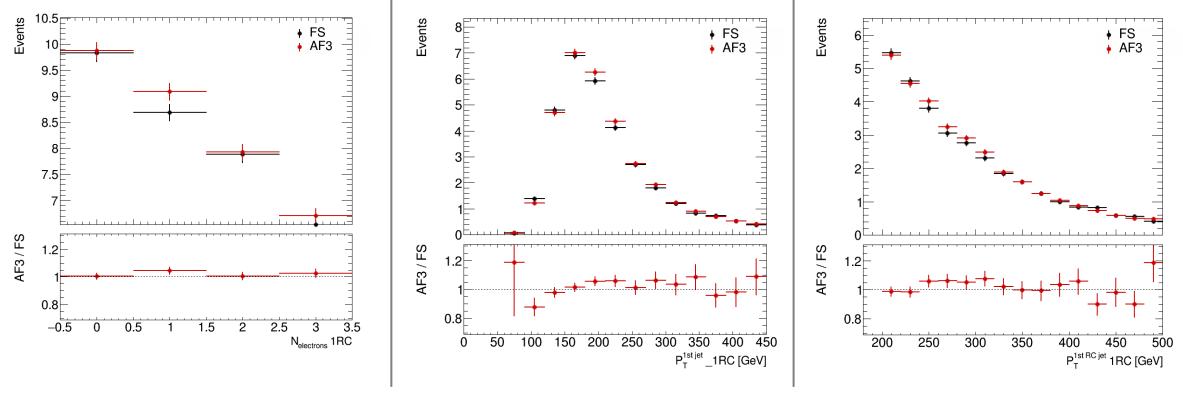
FS:


- Refers to a detailed simulation approach with high precision.
- Provides accurate data but requires significant computational resources.

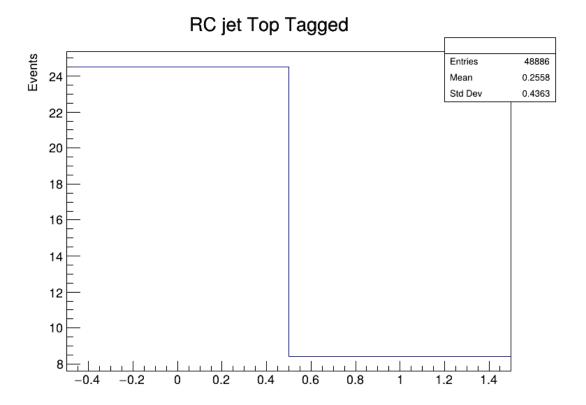
AF3:

- A parametrized detector response model.
- Significantly speeds up the simulation process by simplifying the modeling of detector responses.

Comparison of Two Simulations Using PyROOT



Part of my code


```
# Get the histograms from the files
19
20
         hist1 = file1.Get(f"{folder_name}/subjet_3_pt_region_3L_1RC")
21
         hist2 = file2.Get(f"{folder_name}/subjet_3_pt_region_3L_1RC")
22
23
         # Draw the histograms on these axes
         hist2.SetMarkerColor(root.kRed+1)
24
25
         hist2.SetLineColor(root.kRed+1)
         ax1.plot(hist1, "EP" , linecolor= root.kBlack , label="FS", labelfmt="EP")
26
         ax1.plot(hist2, "EP", label="AF3", labelfmt="EP")
27
28
29
30
31
         # Calculate and draw the ratio
         ratio_hist = hist2.Clone("ratio_hist")
32
33
         ratio_hist.Divide(hist1)
         ratio_hist.SetMarkerColor(root.kRed+1)
34
         ratio_hist.SetLineColor(root.kRed+1)
         ax2.plot(ratio hist, "EP" )
36
38
39
         # Draw line at y=1 in ratio panel
         line = root.TLine(ax2.get_xlim()[\theta], 1, ax2.get_xlim()[1], 1)
         ax2.plot(line, linecolor=root.kBlack , linestyle=2)
         line.SetLineStyle(2)
42
         ax2.plot(line)
43
44
```

Some of the results

- Both simulations produce almost similar event counts for the given bins.
- The ratios are very close to 1, indicating that AF3 provides a similar response to FS.
- AF3 should therefore be calibrated.

Work in progress: add variables like RC Jet is top tagged or not?


```
ROOT::RDF::RNode ttZBoostedFrame::is_RCjetToptagged(ROOT::RDF::RNode mainNode) {
    auto isRCjetToptaggedLambda = [](const std::vector<RCJet>& rc_jets) {
        // loop through each RC jet in the vector
       for (const auto& rc_jet : rc_jets) {
           //check if the RC jet has at least 3 subjets
            if (rc_jet.n_subjets()>= 3) {
                //check if the RC jet mass and pt criteria \,
                if (rc_jet.M()> 20'000 && rc_jet.Pt()> 200'000){
                    //loop through each subjet in the RC jet
                    for (const auto& subjet:rc_jet.subjets()){
                        // check if the subjet is b-tagged
                        if (subjet->is_btagged()){
                           return true;
       return false;
    mainNode = systematicDefine(mainNode, "isRCjetToptagged_NOSYS", isRCjetToptaggedLambda, {"rc_jets_NOSYS"});
    return mainNode;
```

Thank you

For listening

