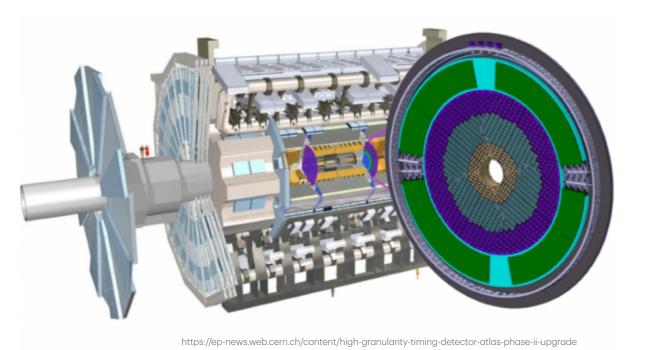
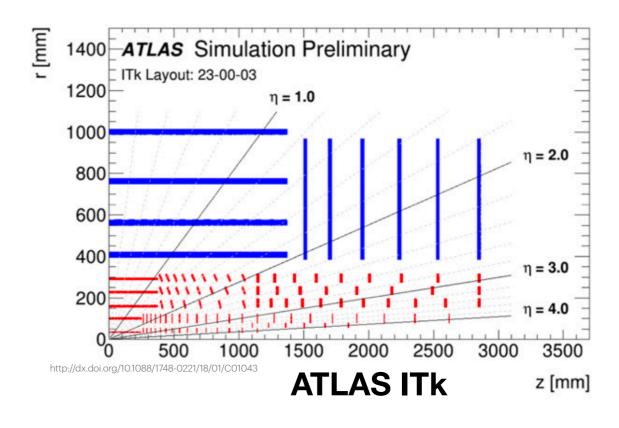


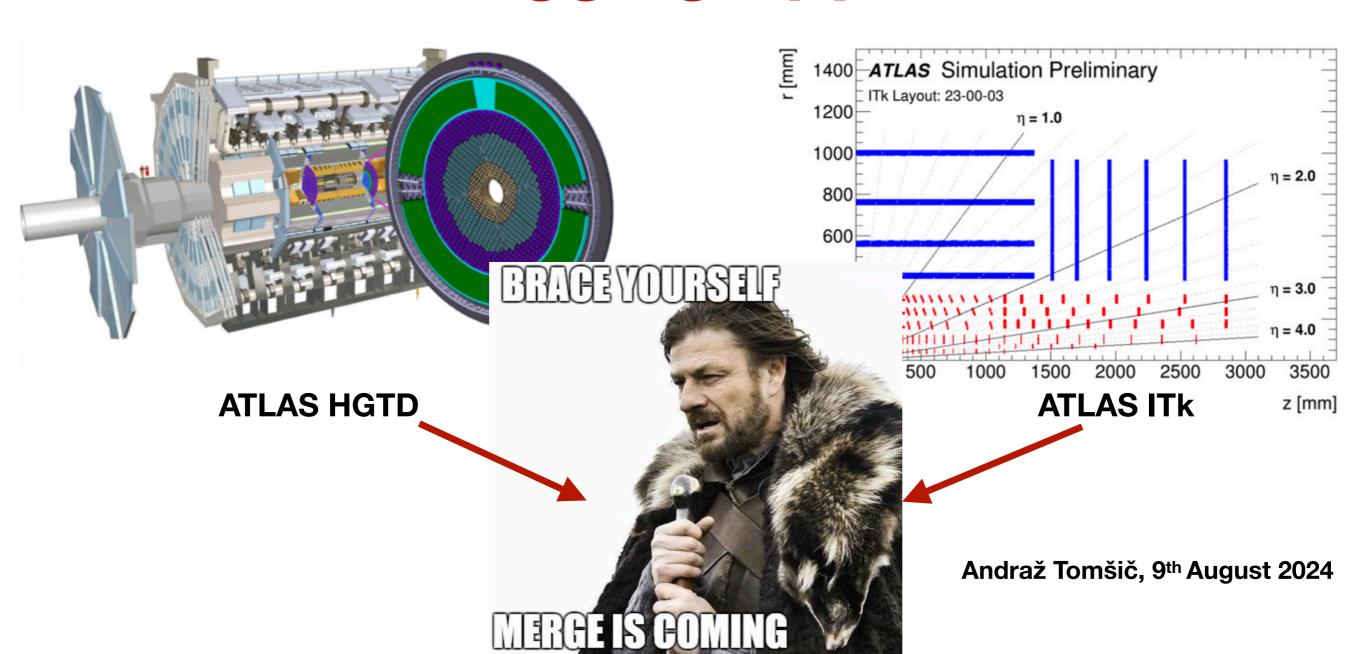
Impact of 4D Tracking in Flavour Tagging Applications



ATLAS HGTD



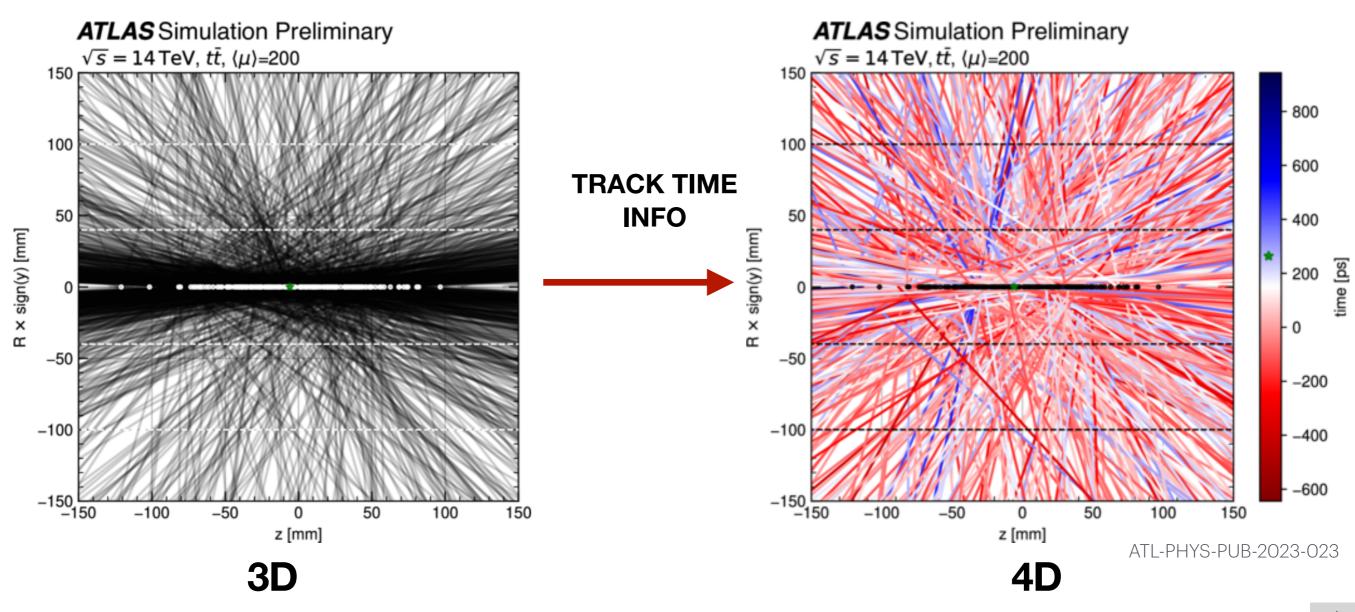
Impact of 4D Tracking in Flavour Tagging Applications

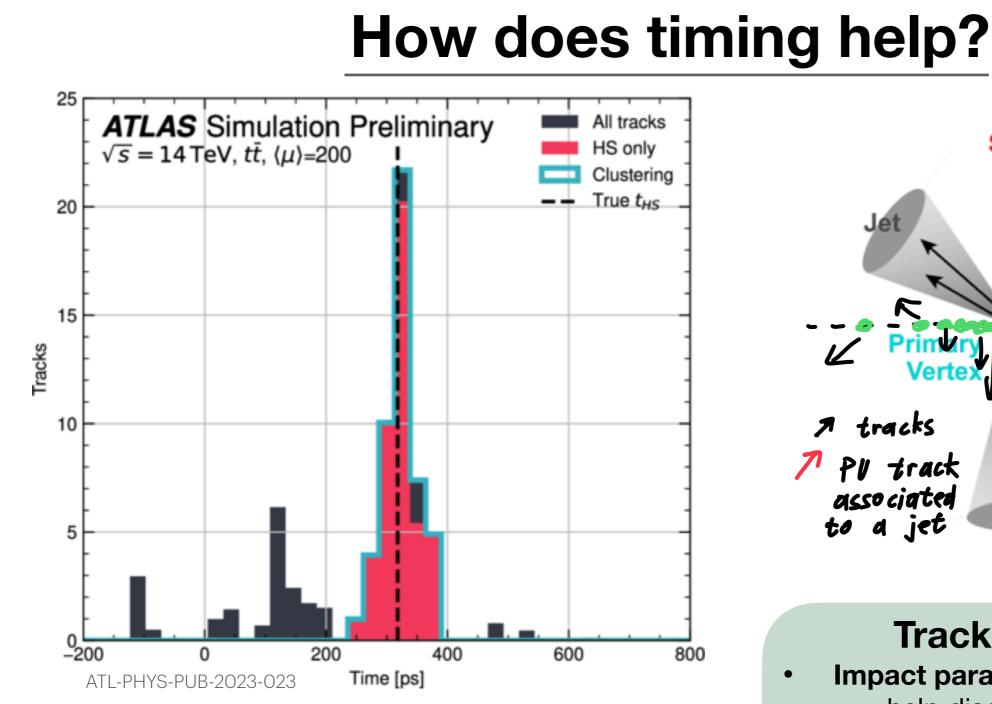


Problem overview

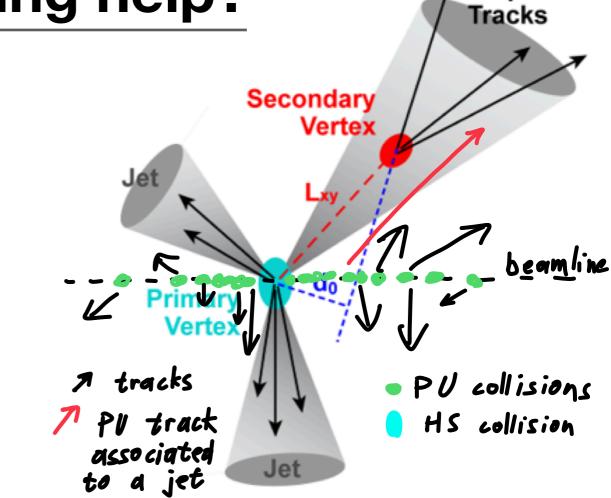
Challenges:

- **HL-LHC:** more pp interactions per bunch crossing → increased pile up (PU)
- Some PU tracks get falsely associated to a jet (noise)
- More noise decreases flavour tagging performance (ftag)





Timing helps distinguish between real HS and falsely associated PU tracks.



Track observables:

- Impact parameters such as d₀ and L_{xy}
 - help discriminate b-jets
- Functions of p_T, azimuthal angle, polar angle
- Track time relative to HS
- Many more...
- Jet properties: not used directly

Displaced

Methodology

Task decription:

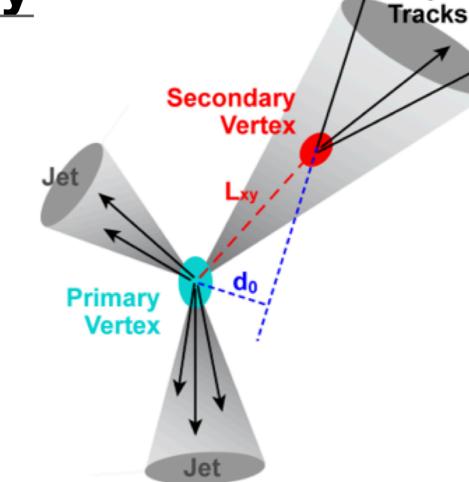
- ACTS for MC simulations of ttbar events
- Evaluate Neural Network (NN) ftag performance:
 - Train NN with and without timing

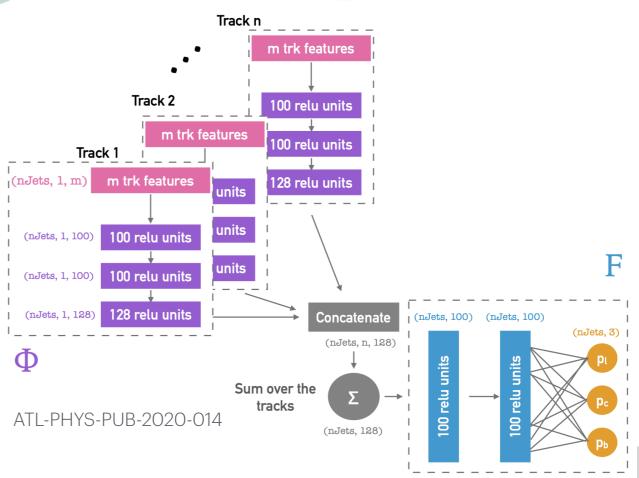
Objectives:

- Multi class classification Targets: I-jet, c-jet, b-jet
- Goal: Try improving accuracy, efficiency for b-jet reconstruction with inclusion of timing

DIPS (Deep Sets):

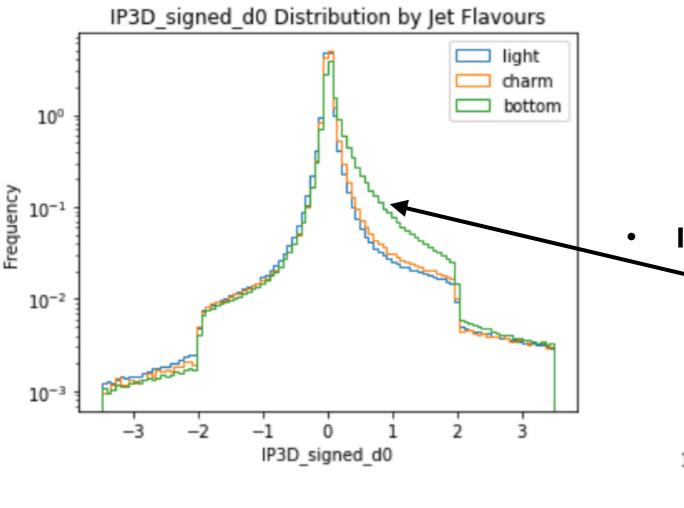
- Simplified Graph NN (GNN)
- Use **observables of tracks** associated to a jet
- GNN idea: Use a small NN to extract info from each track and later combine this information into a single vector (sum or mean)





Displaced

Observables Analysis



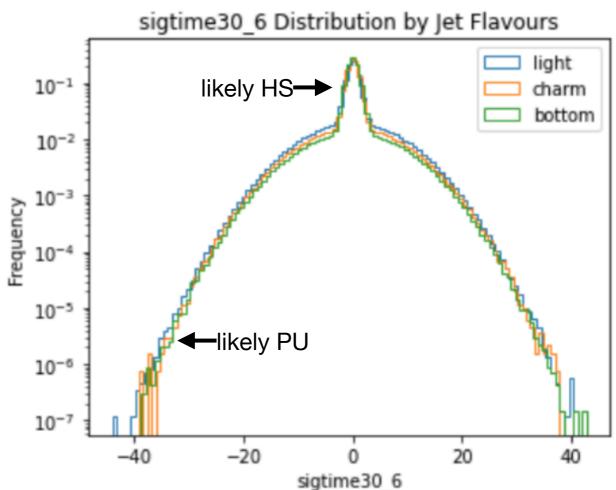


Impact parameters such as do and zo:

b-hadrons have longer decay time bigger impact parameters on average

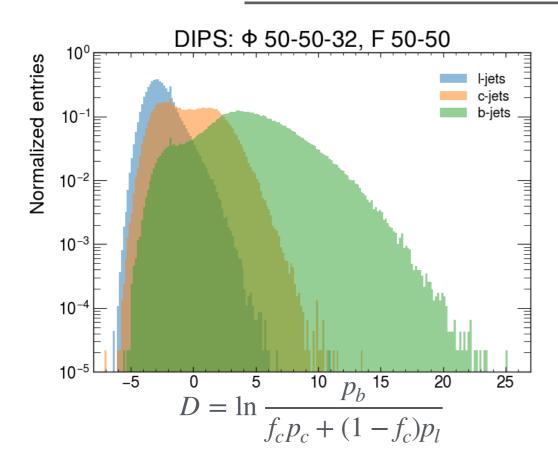
Track time (relative to HS):

- Tracks with large times are likely to originate from PU.
- Tracks close to 0 (limited by resolution) likely originate from HS.



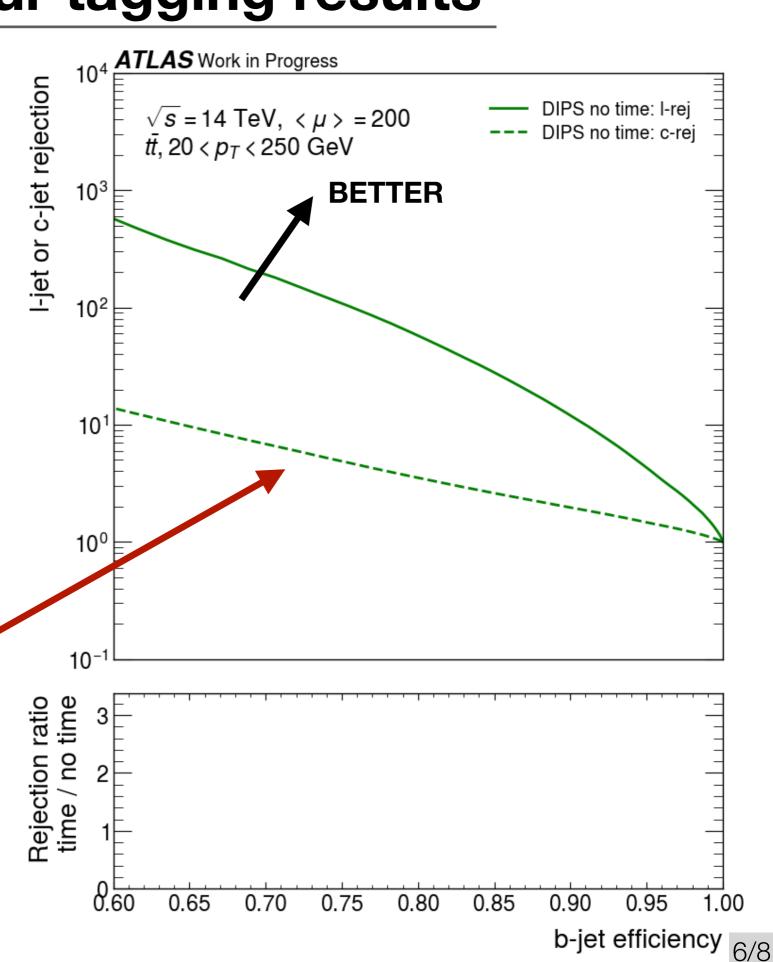
Many more features are used for NN.

DIPS flavour tagging results

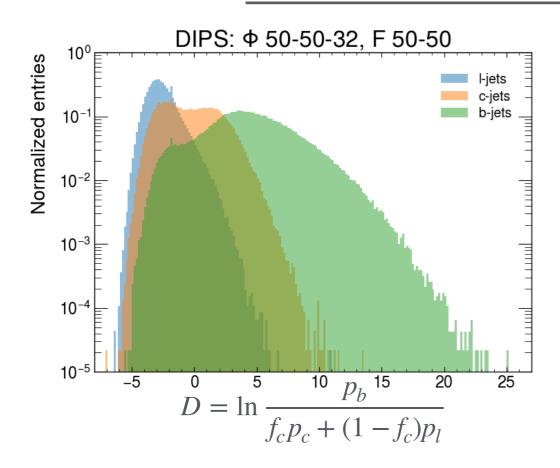


Typical distribution over NN score for flavour tagging.

Different simulated time resolutions of the detector are compared.



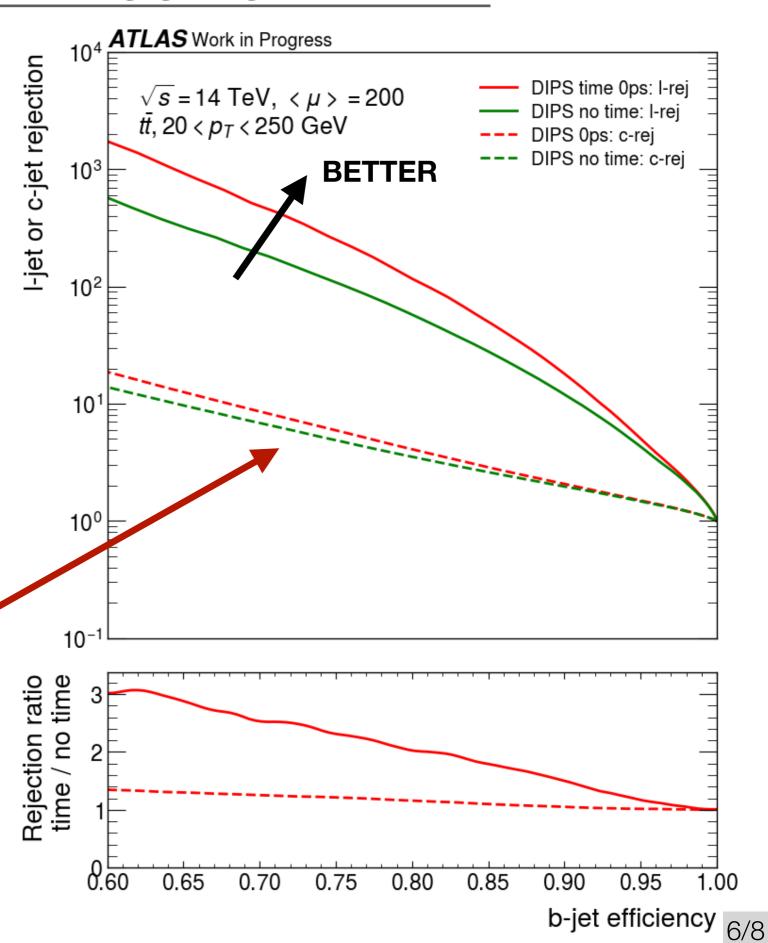
DIPS flavour tagging results



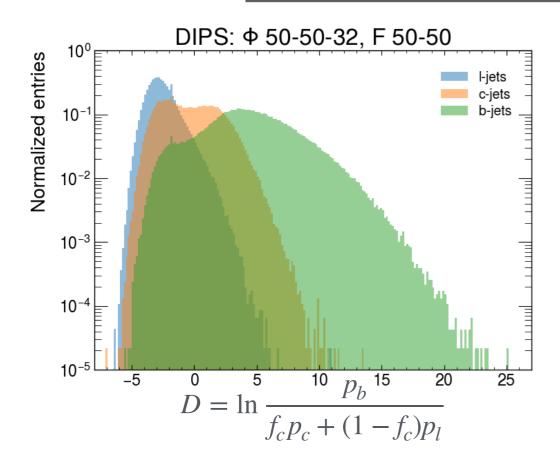
Typical distribution over NN score for flavour tagging.

Different simulated time resolutions of the detector are compared.

TIMING IMPROVES BACKGROUND REJECTION UP TO 3 TIMES FOR PERFECT RESOLUTION.



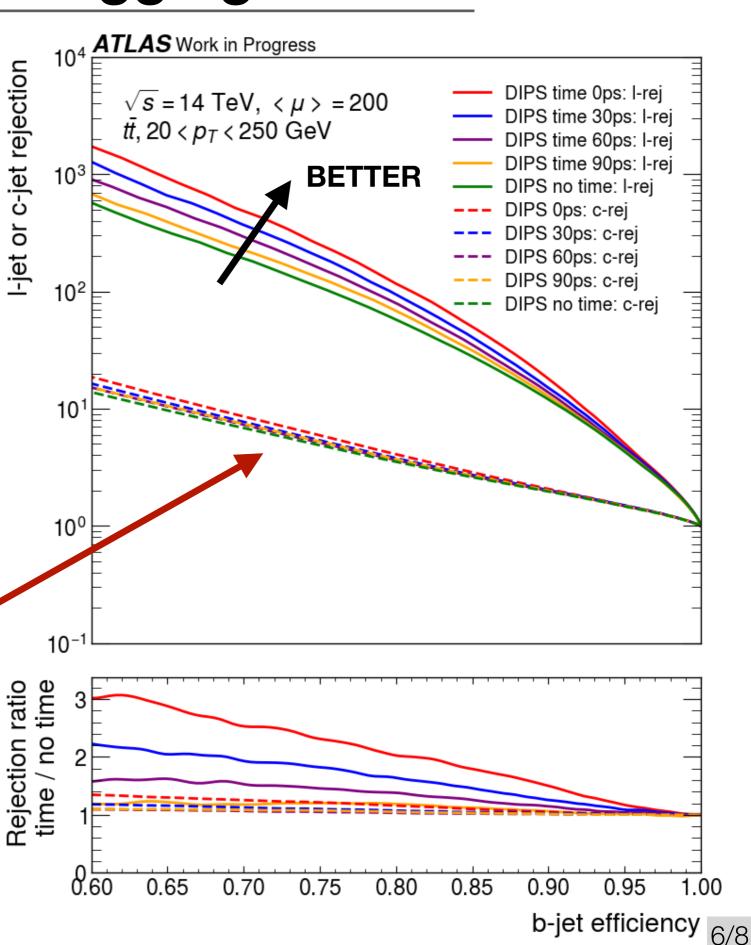
DIPS flavour tagging results



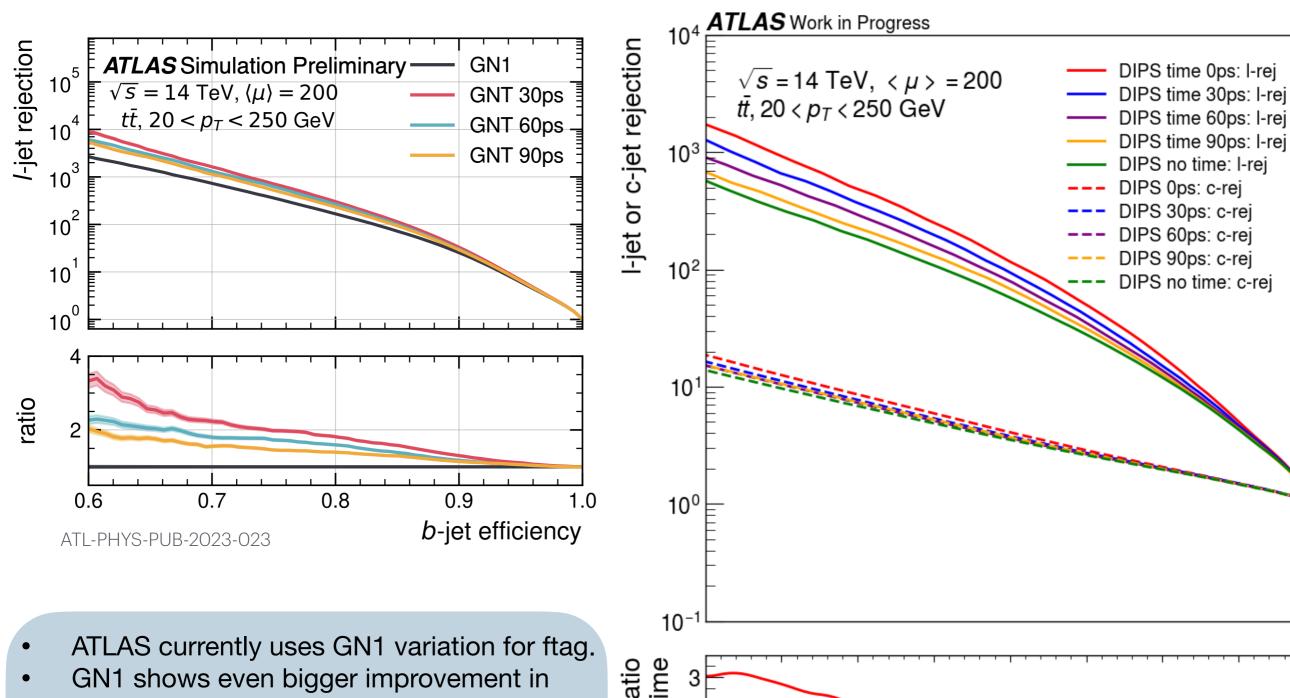
Typical distribution over NN score for flavour tagging.

Different simulated time resolutions of the detector are compared.

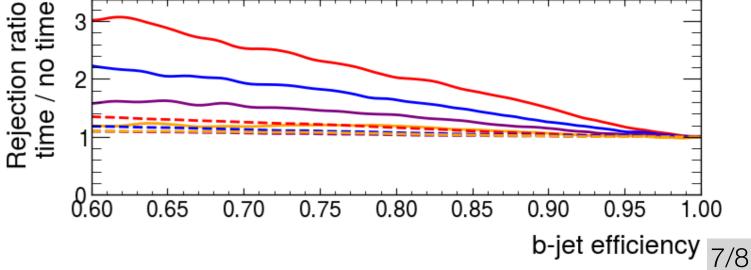
TIMING IMPROVES BACKGROUND REJECTION UP TO 3 TIMES FOR PERFECT RESOLUTION.



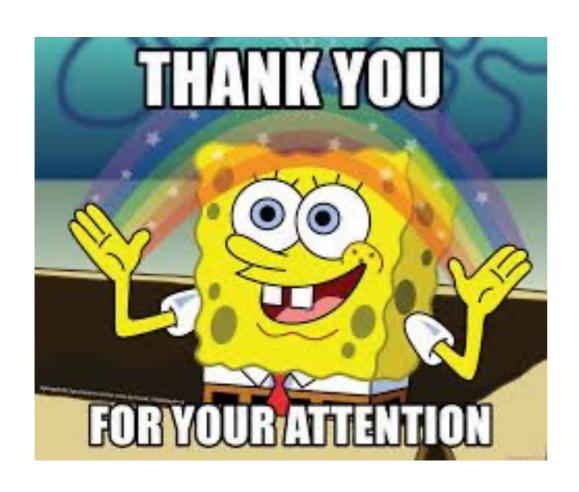
DIPS vs State of the Art GNN



- (ratio of) background rejection with timing.
- Note: GNN was trained on approximately 50% more statistics than DIPS.

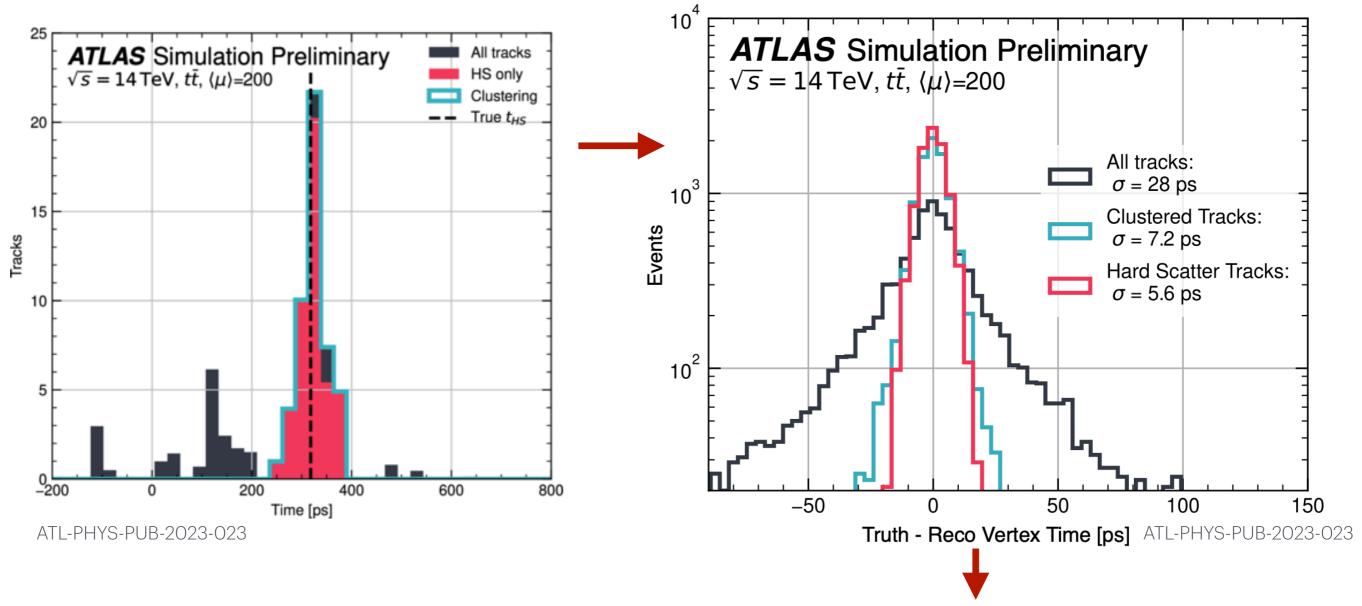


A big thanks to my supervisor, Valentina Cairo, and other members of the DIPactS team, including Lorenzo Santi, Pierfrancesco Butti, and Nicole Hartmann.





How does timing help?



Timing helps NN reconstruct HS time more precisely.