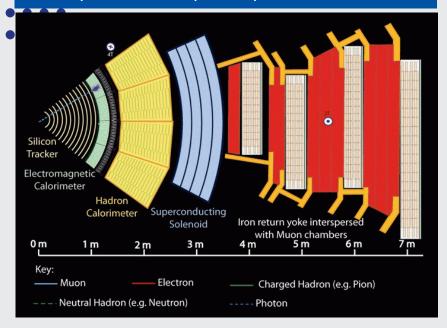


Machine Learning Models for O Data Quality Monitoring

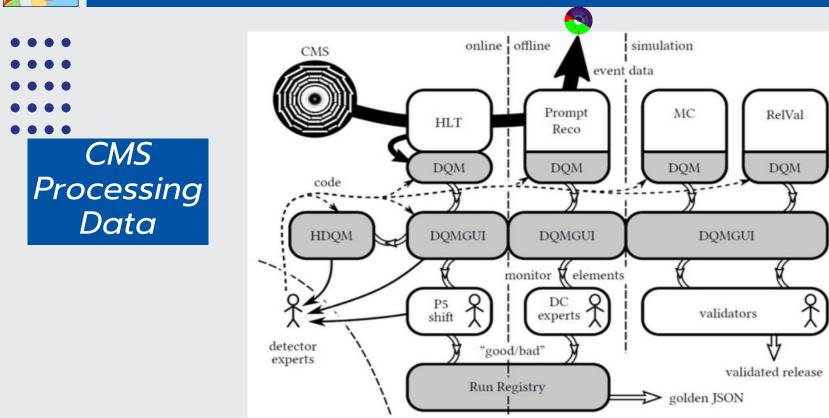
Presented by: Sarah Al Khudari

Supervisor: Roberto Seidita Co-Supervisor: Antonio Vagnerini

Sarah AlKhudari | Machine Learning Models for Data Quality Monitoring

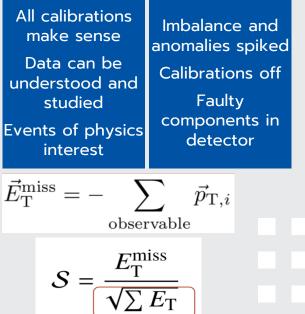

6 August 2024

Introduction


WHAT IS THE CMS DETECTOR?

The CMS detector isa general-purpose detector designed to identify different particles from proton-proton collisions

- Silicon Tracker: It measures the paths of charged particles (like electrons and protons)
- *Electromagnetic Calorimeter (ECAL):* Incoming electrons and photons produce a shower in the calorimeter
- Hadron Calorimeter (HCAL): Creates showers to measure energy of hadrons(quarks)
- *Superconducting Solenoid:* Magnet that bends the paths of charged particles. To measure momentum
- *Muon Chambers:* detect these muons and track their paths.


Data Quality Monitoring (DQM)

		un of the		ents coming	
		s made of of f data-taking		misections; 23	
• [• Lumisections have elements studied such as:				
•	METSig				
•	METPhi				
•	MET_2				
•	SumET				

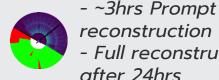
GOOD data VS BAD data

Labeling "GOOD" or "BAD" ٠

Monitor **detector health** and particle **reconstruction** quality

Use of DIALs aids in the • process:

OFFLINE DQM


Main goal of offline DQM is to certify if data can be used for physics.

Main goal for online DQM is check data quality in real time

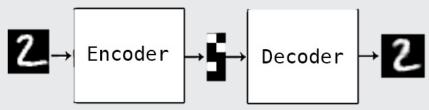
ONLINE DQM

- Data monitoring done with 24/7 shifters
- Histogram subsets focusing ٠ on subgroups performance real time

6 August 2024

reconstruction - Full reconstruction

after 24hrs

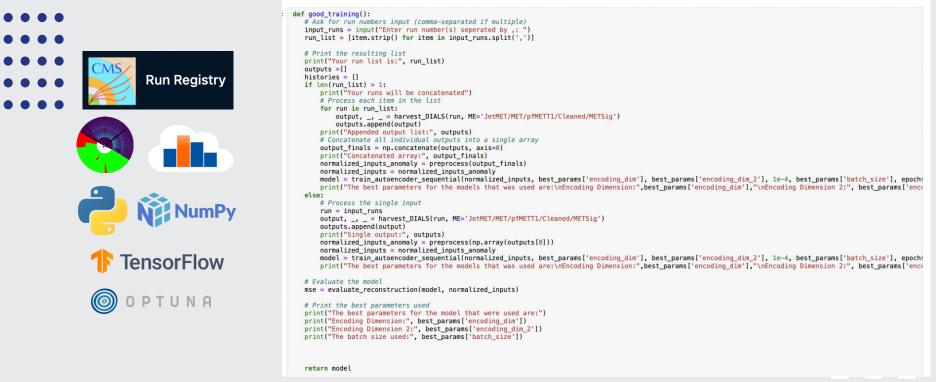

ML4DQM: Autoencoders

$\bullet \bullet \bullet$

- •••
- •••
-

- Machine learning a subcategory of AI
- ML that uses encoding and decoding layer
- Compresses the input layers and then later build again when decoded

What are Autoencoders?



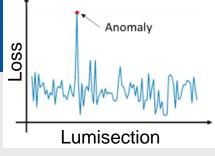
Unsupervised learning

- This model is trained by using unsupervised learning. This means that it's given a data set without a label.
- The model is trained on what we know as "GOOD" data.
- After reconstructing the data constantly, if there is a spike in the output histogram we can name is as "anomalies"

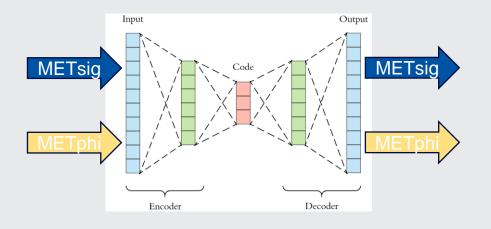
Training Model with only good Data

Epoch 994/2000 Epoch 995/2000 The best parameters for the models that was used are: Encoding Dimension: 10 Encoding Dimension 2: 2 The batch size used: 128 Mean Squared Error for the first sample: 0.014494354134580853 Input vs Reconstruction for the First Sample - Input — Reconstruction Error 0.8 0.6 E 0.4 0.2 0.0 20 10 30 in Feature Index

 Model shows that reconstruction error is low, MSE is close to initial input...model is training well, good performance



Future Works and Goals


Future Works:

- Evaluating the model on
 - "Anomalies" with "Bad Data"
 - When a "Bad Data" is run in model there is a "spike"
 - Analyze the Model:
 - Compare Trained Data and Test Data
 - Overfitted or not (difficult with unsupervised)
 - Efficiency
 - And so on...

Goals:

- The current model takes in one element, the goal is taking in two monitory elements
- Anomalies in one run could be in other elements

-
-

Any Questions?

6 August 2024