Measurement of hadronic Higgs boson decays at FCC-ee

Alexis Maloizel George lakovidis Giovanni Marchiori Michele Selvaggi Jan Eysermans Loukas Gouskos

1

8th FCC Physics Workshop - 14/01/2025

Motivations

Measurement of **Higgs couplings** to quarks and gluons at FCC-ee

Yukawa coupling

Deviation from SM \rightarrow Possible BSM physics

Fully hadronic represents 80% of the Higgs decays

Higgs decay H→bb H→WW/ZZ H→gg H→cc H→ss (H→TT) BR 57.7% 8.6% 2.9% 0.024% 11% (6.2%) **Observable at FCC-ee** only one observed to this day Also possible future observation of **Flavour-violating** decays

Overview

ZH (Higgstrahlung)

Z decay channels

Z→II, I = e,µ Z→qq Z→vv √S & Luminosities (full program)

240 GeV → 10.8ab-1 365 GeV → 3.0ab-1

Samples IDEA (Delphes fast sim)

signals ZH@240 - H \rightarrow bb/cc/gg/ss/WW/ZZ/ $\tau\tau$ ZH(+VBF)@365 N = 2 exclusive kT clustering for Z(II/ $\nu\nu$)**, N = 4 for Z(qq) backgrounds WW, ZZ, Z/ γ *, Zqq, ee, µµ, tt, $\nu\nu$ Z, qqH

- Orthogonal selection to separate all Z decay channels (II, qq, vv)
- S/B optimization with **cuts** on H dijets and Z decay pairs
 - $\circ \quad \text{cuts on E}_{\text{jets}}, \text{E}_{\text{miss}}, \text{p}_{\text{leptons}}, \text{lcos(theta}_{\text{II/qq}})\text{l}, \text{m}_{\text{II/qq}}, ...$
- **Categorization** of events in relation to their tagged Higgs decay (b,c,g,s,W,Z,τ)
 - \circ ~ categorization using Jet Tagger scores + jet properties
- Simultaneous fit on all categories assuming tagging efficiencies

** We also force reconstruction of H(WW/ZZ) to be 2 jets (rather than the expected 4) 8th FCC Physics Workshop - Alexis Maloizel - Higgs hadronic couplings at FCC-ee

Outline

Analysis I

ZH→IIjj/ννjj at 240 & 365 GeV (APC) jj = bb,cc,gg,ss,WW,ZZ,ττ Analysis II

ZH→qqjj/*vv*jj at **240** & **365** GeV (BNL)

Combination of the studies

ZH→IIjj/vvjj at 240 GeV

FCCAnalyses: FCC-ee Simulation (Delphes)

Signals: Z(II)H(bb/cc/gg/ss/WW/ZZ/ $\tau\tau$) **Backgrounds:** WW, ZZ, Z/ γ^* , Zqq, ee, mumu 1D Study of the mass recoiling from the **Z** $(E_{ll} + E_H, \vec{p}_{ll} + \vec{p}_H) = (\sqrt{s}, \vec{0}) \Rightarrow M_{recoil}^2 = s + m_Z^2 - 2E_{ll}\sqrt{s}$ e^{-} H **Z(vv)** s: FCC-ee Simulation (Delphes) **Signals:** Z(uv)

Signals: Z(*vv*)H(bb/cc/gg/ss/WW/ZZ/ττ) **Backgrounds:** WW, ZZ, *vv*Z, Zqq, qqH 2D Study of the mass recoiling from the **H** + visible mass from **H decay**

$$m_{miss}(=m_{\nu\nu}) = m_{recoin}$$

 $m_{visible}^{}=m_{jj}$

Events categorization - 240 GeV

We train a Neural Network to categorize the events in each signal channels

Z(II) Confusion Matrix

Training variables

[•]m_{visible} (normalized)

6

Z(vv) Confusion Matrix

^{0.2} log(d₂₃) (normalized)

0.0

ZH→lljj at 365 GeV

changes compared to 240 GeV

Signals: Z(II)H(bb/cc/gg/ss/WW/ZZ/ $\tau\tau$) **Backgrounds:** WW, ZZ, Z/ γ^* , Zqq, ee, mumu, tt 1D Study of the mass recoiling from the **Z** $(E_{ll} + E_H, \vec{p_{ll}} + \vec{p_H}) = (\sqrt{s}, \vec{0}) \Rightarrow M_{recoil}^2 = s + m_Z^2 - 2E_{ll}\sqrt{s}$

Same training variables and strategy as for 240GeV

Z(II) Confusion Matrix

vvjj at 365 GeV - Separate ZH and VBF

Same could also be considered for 240GeV in later studies

Backgrounds: WW, ZZ, *vv*Z, Zqq, qqH, tt 2D Study of the mass recoiling from the **H** + visible mass from **H decay** Contribution from **VBF** non-negligible at 365 GeV

$$m_{miss}(=m_{\nu\nu})=m_{recoil}$$

7 = len(bb/cc/gg/ss/WW/ZZ/*rt*)

The number of POIs in the fit is now 14 = 7*(vbf+zh) We then categorize events as before for both ZH and VBF

Purity categorization - 240 & 365 GeV

Goal : increase analysis sensitivity by including purity categories in the samples after

vvjj at 240 & 365 GeV (BNL) 240 **Signals:** Z(*vv*)H(bb/cc/qq/ss/WW/ZZ/ττ) 365 Signals: ZH - nu_{mu}nu_{mu}H * 3 VBF - *nu_enu_eH - nu_{mu}nu_{mu}H* (same strategy as in page $\underline{8}$) **Backgrounds:** WW, ZZ, Z/γ*, Zqq, *νν*Z 2D Study of the mass recoiling from the H + visible mass from **H decay** $m_{miss}(=m_{vv})=m_{recoil}$ m = m ii

Categorization of jets using the same ParticleNet jet tagger scores as previous analysis (different method)

Events selection orthogonal to ZII analysis

ZH→qqjj at 240 & 365 GeV

Signals: Z(qq)H(bb/cc/gg/ss/WW/ZZ/ $\tau\tau$) **Backgrounds:** WW, ZZ, Z/ γ^* , Zqq, $\nu\nu$ Z 2D Study of the both hadronic masses from the **H** and **Z** $m_{H}^{H} = m_{jj}^{H} \qquad m_{z}^{Z} = m_{jj}^{Z}$

Categorization of jets using the same ParticleNet jet tagger scores as previous analysis (different method)

Events selection orthogonal to $Z(II)/Z(\nu\nu)$ analysis **Jet Pairing** based on tagger scores & combinatorics

Jet pairs reconstruction for Z(qq)H(jj)

Categorization for Z(qq) and Z(vv) - Score Map

Events are categorised from the sum of the two jets score

$$\forall \text{ event: } J_{12}^{score} = J_1^{score} + J_2^{score}, J = b, c, s, g$$
eg. if: $J_1^{score} = b \& J_2^{score} = b \implies B_{like}^{score}$
if $B_{like}^{score} > C_{like}^{score} > S_{like}^{score} G_{like}^{score} \implies B_{like}^{event}$

Events are further divided in 3 categories based on their *Score Like* value

Categorization for Z(qq) and Z(vv) - Purity categories

Results - Combination at 240 GeV

Fitting using CMS tool CombineTF to extract σ .BR in each category

Monte Carlo stats uncertainties

Backgrounds are let fully floating **Expected sensitivity (%) of \sigma(ZH).BR(H\rightarrowjj) at 68% CL L = 10.8ab-1**

240 GeV	H→bb	Н→сс	H→gg	H→ss	H→ZZ	H→WW	Η→ττ
Z→II	0.68	4.02	2.18	234	13.66	1.78	4.08
Z→qq	0.32	3.52	3.07	408.55	52.08	8.74	110.73
Z→vv (BNL)	0.33	2.27	0.94	137	19.84	1.89	21.76
Z→vv (APC)	0.36	2.18	1.10	151	15.29	1.51	11
Combined (BNL)	0.21	1.66	0.8	104.99	10.07	1.16	3.97
Combined (APC)	0.22	1.65	0.93	121	9.56	1.11	3.79

Results - Combination at 365 GeV

Fitting using CMS tool CombineTF to extract σ .BR in each category

Monte Carlo stats uncertainties

Backgrounds are let fully floating

Expected sensitivity (%) of σ .BR(H \rightarrow jj) at 68% CL

L = 3.0ab-1

365 GeV		H→bb	Н→сс	H→gg	H→ss	H→ZZ	H→WW	Η→ττ
ZH→IIH		1.74	11.29	5.74	1169	44	5.61	13.15
vvH	ZH	0.69	4.24	2.82	413.5	36.8	3.60	13.1
	VBF	0.68	3.99	2.64	295.2	43.4	5.43	30.6
ZH→qqH		0.51	3.87	3.05	564	55.7	5.73	259
Combined	ZH	0.41	3.13	2.21	356.12	26.01	3.18	10.97
	VBF	0.67	3.49	2.66	290	37.12	5.36	24.2

Conclusion & prospects

Promising results at % **level** in some categories Achieved full combination at **240 GeV** and **365 GeV**.

Expected sensitivity (%) of σ .BR(H \rightarrow jj) at 68% CL L = 10.8ab-1

240 GeV		H→bb	Н→сс	H→gg	H→ss	H→ZZ	H→WW	Η→ττ
Combined (BNL)	0.21	1.66	0.8	104.99	10.07	1.16	3.97
Combined (APC)		0.22	1.65	0.93	121	9.56	1.11	3.79
365 GeV								
365 GeV		H→bb	H→cc	H→gg	H→ss	H→ZZ	H→WW	Η→ττ
365 GeV Combined	ZH	H→bb 0.41	H→cc 3.13	H→gg 2.21	H →ss 356.12	H→ZZ 26.01	H → WW 3.18	Η →ττ 10.97

Thank you

Big thanks to : George lakovidis and Giovanni Marchiori, Jan Eysermans and Michele Selvaggi

(ZH) Higgstrahlung process - Recoil Mass

•
$$e^+ + e^- \rightarrow Z + H$$

Recoil Mass:

 $(E_{ll}+E_H,\overrightarrow{p_{ll}}+\overrightarrow{p_H})=\left(\sqrt{s},\overrightarrow{0}\right) \Rightarrow M^2_{recoil}=s+m^2_Z-2E_{ll}\sqrt{s}$

- Allows model independent measurement of the total Higgs Cross-section
- Unusable in the LHC due to the composite nature of protons

Cutflows - 240 GeV

S/B optimized with **selections** on leptons and jets kinematic properties

ZII

Cut	ZHbb		ZHcc		ZHgg		ZHss		ZHWW		ZHZZ		ZHtautau		ZZ		WW		zll		Zqq	
	Yigld	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff										
No cuts	40 55		2013		5700		17		14985		1838		4367		6794950		82192500		67965000		263269500	
one Z->ll candidate	36448	90	1808	90	5119	90	15	90	13571	91	1664	91	3956	91	566449	8	772157	1	13389259	20	141045	Θ
m(ll) 81-101 GeV	32793	90	1627	90	4605	90	14	90	12151	90	1502	90	3547	90	363333	64	190171	25	5677860	42	7530	5
cos(theta_ll) <0.8	26694	81	1327	82	3746	81	11	81	9889	81	1223	81	2884	81	227312	63	145268	76	906114	16	5550	74
m(recoil) 120-140 GeV	25497	96	1268	96	3580	96	11	96	9408	95	1154	94	2743	95	32182	14	61912	43	206164	23	1079	19
max p(extra lep) < 25 GeV	24318	95	1256	99	3577	100	11	100	6912	73	1040	90	2031	74	28850	90	61825	100	206163	100	977	91
l=e	11950		616		1754		5		3386		510		998		14481		31880		171906		466	
l=mu	12368		640		1823		5		3526		530		1033		14369		29945		34258		511	

Ζνν

Cut	vvHbb		vvHcc		vvHqq		vvHss		VVHWW		VVHZZ		vvHtautau -> low	qqH		nuenueZ		Zqq		WW		ZZ	
	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield-> Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff
lo cuts	134500		6675		18910		55		49700		6100		14485 -> hi g h	681520		166370		263269500		82192500		6794950	
lo leptons with p>20 GeV	123364	92	6531	98	18877	100	55	100	34142	69	5335	87	-> <u>9824</u> 68	580210	85	152109	91	254437693	97	49001192	60	5299230	78
L5 <e_j1<105, 10<e_j2<70="" gev<="" td=""><td>122075</td><td>99</td><td>6439</td><td>99</td><td>18501</td><td>98</td><td>54</td><td>98</td><td>32873</td><td>96</td><td>4922</td><td>92</td><td>7801 -> 179/</td><td>16777</td><td>3</td><td>147609</td><td>97</td><td>109466219</td><td>43</td><td>6515777</td><td>13</td><td>1811708</td><td>34</td></e_j1<105,>	122075	99	6439	99	18501	98	54	98	32873	96	4922	92	7801 -> 179/	16777	3	147609	97	109466219	43	6515777	13	1811708	34
<pre>cos(theta_jj) <0.9</pre>	110401	90	5824	90	16754	91	49	90	29563	90	4226	86	6496 -> 83	14859	89	92878	63	2556074	2	4698934	72	1312817	72
cos(th_j1+th_j2)>0.5	110014	100	5806	100	16648	99	49	100	28351	96	4025	95	6441-> 199jh	14725	99	80799	87	2508454	98	3787830	81	1035917	79
cos(phi_j1-phi_j2)<0.999	106539	97	5623	97	16165	97	48	97	27633	97	3919	97	-> t6200u 96	14169	96	78719	97	2045260	82	3698506	98	1014048	98
70 <mvis<150, 60<mmiss<220="" gev<="" td=""><td>105661</td><td>99</td><td>5555</td><td>99</td><td>15955</td><td>99</td><td>47</td><td>99</td><td>27094</td><td>98</td><td>3792</td><td>97</td><td>6165 -> 199</td><td>13083</td><td>92</td><td>77045</td><td>98</td><td>2039752</td><td>100</td><td>2846585</td><td>77</td><td>974735</td><td>96</td></mvis<150,>	105661	99	5555	99	15955	99	47	99	27094	98	3792	97	6165 -> 199	13083	92	77045	98	2039752	100	2846585	77	974735	96
123>0, d34>0	105661	100	5555	100	15955	100	47	100	27078	100	3787	100	5896 -> 196	13083	100	76961	100	2039516	100	2829867	99	973642	100
All cuts	105661	100	5555	100	15955	100	47	100	27078	100	3787	100	5896 -> 100h	13083	100	76961	100	2039516	100	2829867	100	973642	100
fficiency (%)	vvHbb	vvHcc	vvHgg	,	vvHss v	VHWW	vvHZZ vv	Htautau	qqH	nuenue	Z	Zqq	WW -> miZZ										
	78.56	83.23	84.38	3	84.52 5	4.48	62.09	40.70	1.92	46.20	6 0	.77	3.44 ->14.33										
ff. in ZH(other) channels wrt h	ad decays	(%)	W	۷ 🚽	ZZ ta	utau																	
			83.65	5	82.51 7	7.83																	

Cutflows Zqq - 240 GeV

	Lepton cut	$M_{\rm vis}, \theta_{\rm vis}$	d_{ij}		Lepton cut	$M_{\rm vis}, \theta_{\rm vis}$	d_{ij}
$\rightarrow Z(cc)H(gg)$	98.7	88.3	87.2	$e^+e^- \rightarrow Z(bb)H(\tau\tau)$	63.7	43.9	32.8
$\rightarrow Z(cc)H(ss)$	99.0	88.4	86.3	$e^+e^- \rightarrow Z(ss)H(\tau\tau)$	67.1	48.3	36.4
$\rightarrow Z(cc)H(cc)$	96.6	88.1	86.1	$e^+e^- \rightarrow Z(cc)H(\tau\tau)$	68.0	50.2	38.1
$\rightarrow Z(cc)H(bb)$	89.7	83.5	81.2	$e^+e^- \rightarrow Z(aa)H(\tau\tau)$	67.9	50.1	38.1
$\rightarrow Z(qq)H(gg)$	99.8	86.2	85.2	$e^+e^- \rightarrow Z(bb)H(Z\gamma)$	86.5	62.4	61.3
$\rightarrow Z(qq)H(ss)$	99.9	86.6	84.6	$e^+e^- \rightarrow Z(ss)H(Z\gamma)$	90.5	64.0	62.9
$\rightarrow Z(qq)H(cc)$	97.8	87.1	85.2	$e^+e^- \rightarrow Z(cc)H(Z\alpha)$	91.7	63.7	62.5
$\rightarrow Z(qq)H(bb)$	91.4	83.8	81.7	$e^+e^- \rightarrow Z(aa)H(Z_{\gamma})$	91.6	63.1	61.0
$\rightarrow Z(bb)H(gg)$	94.6	87.0	85.9	$e^+e^- \rightarrow Z(bh)H(WW)$	64.7	57.4	54.6
$\rightarrow Z(00)H(ss)$	95.0	81.3	80.1	$e^+e^- \rightarrow Z(ee)H(WW)$	68.0	50.8	57.0
$\rightarrow Z(bb)H(bb)$	92.1 84.4	70.8	77.3	$e^+e^- \rightarrow Z(ss)H(WW)$	68.7	50.0	57.0
$\rightarrow Z(ss)H(aa)$	99.8	87.0	85.9	$e^+e^- \rightarrow Z(aa)H(WW)$	68.6	59.4	56.6
$\rightarrow Z(ss)H(ss)$	99.9	87.2	85.2	$e^+e^- \rightarrow Z(bb)H(ZZ)$	81.8	60.6	57.8
$\rightarrow Z(ss)H(cc)$	97.8	87.7	85.7	$e^+e^- \rightarrow Z(ss)H(ZZ)$	86.1	63.3	60.5
$\rightarrow Z(ss)H(bb)$	91.3	84.1	82.0	$e^+e^- \rightarrow Z(cc)H(ZZ)$	87.5	63.0	61.1
/ent				$e^+e^- \rightarrow Z(aa)H(ZZ)$	87.5	63.6	60.8
				$e^+e^- \rightarrow Z(\mu\mu)H(ii)$	87.5	00.1	00.0
				$e^+e^- \rightarrow Z(bb)H(jj)$	64.1	45.1	27.0
				$e^+e^- \rightarrow W^+W$	04.1	40.1	31.9
				$e^+e^- \rightarrow ZZ$	79.8	43.4	38.1
				$e^+e^- \rightarrow Z/\gamma^*(q\bar{q})$	96.5	31.8	07.6

• Events (orthogonal to $ll, \nu\nu$ analysis)

- $n_i = 4$ per event
- Cuts on leptons
- lepton (both e, μ) $p_l < 20 \text{ GeV} \& n_{e,\mu} \le \overline{2 \text{ per even}}$
- Cuts on $m_{\rm vis}, \theta_{\rm vis}$
 - $m_{\rm vis} > 150 \,{\rm GeV},$
 - $0.15 < \theta_{vis} < 3$
- Clustering merging parameter cut (d₁₂, d₂₃, d₃₄)
- χ^2 on the energy correction <30
- · On the jet pairs

• Pairs: Find minimum $(m_{j_1j_2} - m_Z)^2 + (m_{j_3j_4} - m_H)^2$ for all jet combination $\sqrt{(m_{z_{jj}} - m_W)^2 + (m_{H_{jj}} - m_W)^2} > 10, \sqrt{(m_{z_{jj}} - m_Z)^2 + (m_{H_{jj}} - m_Z)^2} > 10, ZZ, WW$ rejection

 e^+e^- · e^+e^- ·

 e^+e^-

 $e^{+}e^{-}$ -

• 50 < $m_{Z_{ii}}$ < 125 GeV, $m_{H_{ii}}$ > 91 GeV

Cutflows - 365 GeV ZII

Cut	ZHbb		ZHcc		ZHgg		ZHSS		ZHWW		ZHZZ		ZHtautau		ZZ		WW		tt		zll		Zqq	
	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff
No cuts	15504		770		2179				5729		703		1670		1478440		24647950		1840000		8769440		49254270	
>0 iso-leptons with p>40 GeV	15267	98	758	98	2146	98		98	5656	99	693	99	1648	99	273844	19	9077163	37	467641	25	7187002	82	54598	
one Z->ll candidate	14194	93	702	93	1986	93		93	5275	93	647	93	1539	93	200127	73	562743		69355		4590047	64	39609	73
m(ll) 81-101 GeV	9421	66	464	66	1309	66		66	3507	66	438	68	1027		123438	62	48867		9046	13	2165561	47	25	
cos(theta_ll) <0.8	8028	85	397	86	1122	86		86	2981	85	373	85	871	85	54684	44	26214	54	7292	81	245000	11		
m(recoil) 1202200 GeV	7276	91	362	91	1025	91		91	2688	90	328	88	783	90	13233	24	6635	25	323		33794	14		
E(j2)>15 GeV	7255	100	361	100	1025	100		100	2555	95	299	91	597	76	12496	94	6173	93	320	99	24013	71		
<=2 iso leptons	6685	92	357	99	1018	99		100	1618	63	244	82	307		11109	89	6138	99	297	93	24013	100		
d23>0, d34>0	6685	100	357	100	1018	100		100	1616	100	232	95	296	97	9126	82	2992	49	297	100	1597			
All cuts	6685	100	357	100	1018	100		100	1616	100	232	100	296	100	9126	100	2992	100	297	100	1597	100		
l=e	3289		176		501				795		114		146		4699		1564		150		1201			
l=mu	3396		182		518				821		118		150		4427		1428		147		396			
H->had	6685		357		1018				1227		153		284		9126		2992		297		1597			
H->oth									388		79		12											
Efficiency (%)	ZHbb	ZHcc	ZHgs		ZHss	ZHWW	ZHZZ	ZHtautau	ZZ		WW	tt	zll	Zaa										
	43.11	46.41	46.73	3 40	6.93 2	28.21	33.07	17.73	0.62		.01	9.02	0.02	0.00										
- FF ANNOUNCED AND AND A																								
Eff. in e channel (%)	ZHDD	2HCC	2Hgg	5	ZHSS	ZHWW	2HZZ .	2Htautau	2Z		WW 01	tt	ZLL	Zqq										
	33.23	33.75	35.90	5 31	0.12 2	1.75	23.49	13.73	0.50		.01	9.01	0.02	0.00										
Eff. in mu channel (%)	ZHbb	ZHcc	ZHgg	τ 3	ZHss	ZHWW	ZHZZ	ZHtautau	ZZ		WW	tt	zll	Zqq										
	60.56	65.22	65.70	ē 60	6.02 3	39.64	46.46	24.78	0.83		.02	9.02	0.01	0.00										
rff in 70/athan) shares a wet ha		(0)			77 4-																			
Eff. in ZH(other) channels wrt ha	a aecays	(%)	47.25	5 A	22 ta	10 61																		
			41.2.	· "		101101																		

Cutflows Zqq - 365 GeV

	Lepton cut	$M_{ m vis},E_{ m vis}, heta_{ m vis}$	d_{ij}	χ^2		Lepton cut	$M_{\rm vis}, \theta_{\rm vis}$	d_{ij}	χ^2
$e^+e^- \rightarrow Z(cc)H(gg)$	95.1	75.3	74.7	72.2	$e^+e^- \rightarrow Z(bb)H(\tau\tau)$	55.2	49.5	42.5	19.6
$e^+e^- \rightarrow Z(cc)H(ss)$	95.6	76.0	75.3	73.0	$e^+e^- \rightarrow Z(ss)H(\tau\tau)$	61.1	55.6	47.4	22.4
$e^+e^- \rightarrow Z(cc)H(cc)$	90.4	74.0	73.5	70.2	$e^+e^- \rightarrow Z(cc)H(\tau\tau)$	63.8	58.5	49.9	23.6
$e^+e^- \rightarrow Z(cc)H(bb)$	80.9	68.6	68.2	63.3	$e^+e^- \rightarrow Z(aa)H(\tau\tau)$	63.8	58.5	49.9	23.6
$e^+e^- \rightarrow Z(qq)H(gg)$	99.3	75.0	74.1	72.9	$e^+e^- \rightarrow Z(bb) H(Z_{c})$	78.5	62.4	55.0	46.7
$e^+e^- \rightarrow Z(qq)H(ss)$	99.8	75.7	74.8	13.1	$e^+e^- \rightarrow Z(oo)H(Z_{2})$	10.0	67.2	59.4	50.7
$e \cdot e \rightarrow Z(qq)H(cc)$	94.5	74.8	70.0	11.1	$e e \rightarrow Z(ss)H(Z\gamma)$	00.0	60.1	50.4	50.7
$e \cdot e \rightarrow Z(qq)H(00)$	0.66	71.9	71.9	67.0	$e \cdot e \rightarrow \mathcal{L}(cc)H(Z\gamma)$	90.3	09.1	59.4	52.0
$e^+e^- \rightarrow Z(bb)H(gg)$	87.9	72.4	71.0	67.6	$e \cdot e \rightarrow Z(qq)H(Z\gamma)$	90.1	68.6	58.9	51.6
$e^+e^- \rightarrow Z(bb)H(ss)$	81.0	60.3	68.0	64.1	$e^+e^- \rightarrow Z(bb)H(WW)$	57.8	49.8	48.1	36.6
$e^+e^- \rightarrow Z(bb)H(bb)$	79.5	63.0	69.7	56.8	$e^+e^- \rightarrow Z(ss)H(WW)$	63.8	53.7	51.6	40.2
$e^+e^- \rightarrow Z(ss)H(aa)$	00.3	75.8	74.0	73.6	$e^+e^- \rightarrow Z(cc)H(WW)$	66.8	55.0	52.6	41.2
$e^+e^- \rightarrow Z(ss)H(ss)$	99.8	76.5	75.5	74.4	$e^+e^- \rightarrow Z(qq)H(WW)$	66.7	54.6	52.3	40.8
$e^+e^- \rightarrow Z(ss)H(cc)$	94.6	75.4	74.6	72.2	$e^+e^- \rightarrow Z(bb)H(ZZ)$	73.0	60.4	53.8	39.6
$e^+e^- \rightarrow Z(ss)H(bb)$	85.1	70.9	70.3	66.0	$e^+e^- \rightarrow Z(ss)H(ZZ)$	80.8	65.2	58.5	43.7
		0 000000 0	Partice of		$e^+e^- \rightarrow Z(cc)H(ZZ)$	84.7	67.7	60.4	45.4
≤ 2 per event					$e^+e^- \rightarrow Z(qq)H(ZZ)$	84.7	67.3	60.0	45.0
					$e^+e^- \rightarrow Z(\nu\nu)H(jj)$	84.5	1.8	0.8	0.0
					$e^+e^- \rightarrow W^+W^-$	63.8	41.8	31.2	27.9
					$e^+e^- \rightarrow ZZ$	76.8	37.7	32.7	29.9
					$e^+e^- \rightarrow Z/\gamma^*(a\bar{a})$	99.6	31.2	15.9	15.4

 $e^+e^- \rightarrow t\bar{t}$

53.6

50.5

49.5

37.9

- Events (orthogonal to *ll*, *vv* analysis)
 - $n_i = 4$ per event
 - · Cuts on leptons
 - lepton (both e, μ) $p_l < 20 \text{ GeV } \& n_{e,\mu} \le$
 - Cuts on $m_{\rm vis}, \theta_{\rm vis}$
 - $m_{\rm vis} > 150 \,{\rm GeV}, E_{\rm vis} > 190 \,{\rm GeV}$
 - $0.15 < \theta_{vis} < 3$
 - Clustering merging parameter cut (d_{12}, d_{23}, d_{34})
 - χ^2 on the energy correction <100
- · On the jet pairs

• Pairs: Find minimum
$$(m_{j_1j_2} - m_Z)^2 + (m_{j_3j_4} - m_H)^2$$
 for all jet combination
 $\sqrt{(m_{z_{jj}} - m_W)^2 + (m_{H_{jj}} - m_W)^2} > 10, \sqrt{(m_{z_{jj}} - m_Z)^2 + (m_{H_{jj}} - m_Z)^2} > 10, ZZ, WW$ rejection
• 50 < $m_{Z_{ij}}$ < 125 GeV, $m_{H_{ij}} > 91$ GeV

Selection - 240 GeV

		Before selection	Lepton cuts	$ \cos(\theta_{inv}) < 0.85$	kinematics & d	efficiency(%)
Ubb	$Yield(10^5)$	2.91	2.67	2.28	2.28	79 4
H 00	Sig.	10.59	10.34	16.01	54.0	10.4
II.ee	$Yield(10^4)$	1.44	1.41	1.21	1.21	84.0
псс	Sig.	0.52	0.54	0.84	2.87	64.0
IIaa	$Yield(10^4)$	3.59	3.59	3.08	3.07	OFE
ngg	Sig.	1.30	1.39	2.16	7.27	69.9
II.co	Yield	110	110	93.9	93.9	OFF
Hss Vie	Sig.	0.004	0.004	0.006	0.02	80.0
<i>II</i>	$Yield(10^4)$	2.73	1.97	1.67	1.38	50.5
П 11	Sig.	0.99	0.76	1.17	3.27	50.5
HWW	$Yield(10^4)$	10.4	7.34	6.28	6.10	58.7
HZZ	$Yield(10^4)$	1.25	1.10	0.94	0.80	64.0
qqH	$Yield(10^5)$	14.7	12.6	8.86	0.56	3.8
WW	$Yield(10^7)$	17.3	10.6	6.35	1.26	7.3
ZZ	$Yield(10^6)$	14.0	11.0	6.93	2.60	18.6
Zqq	$Yield(10^7)$	56.6	54.7	13.1	0.22	0.4

 $S/\sqrt{S+B}$

Backup - Purity categories

For Zvv, all categories yield the best precision with 3 purity categories

Yields for Z(II) at 240 GeV

Expected yields (significance s/√tot) fo	r Zll at E = 240)						
	bb	сс	gg	SS	WW	ZZ	tautau	bkg	TOTAL
bb_low	8043.0 (76)	0.6 (0)	61.5 (1)	0.0 (0)	5.5 (0)	103.0 (1)	0.0 (0)	2895.1	11108.7
bb_mid	7330.8 (77)	0.2 (0)	13.9 (0)	0.0 (0)	1.1 (0)	16.2 (0)	0.0 (0)	1775.7	9137.9
bb_high	32970.0 (175)	0.0 (0)	3.8 (0)	0.0 (0)	0.2 (0)	4.1 (0)	0.0 (0)	2389.3	35367.4
cc_low	57.8 (1)	458.0 (7)	79.0 (1)	0.1 (0)	230.6 (4)	62.1 (1)	0.0 (0)	3342.0	4229.5
cc_mid	19.7 (0)	474.4 (10)	12.8 (0)	0.0 (0)	17.6 (0)	5.8 (0)	0.0 (0)	1693.6	2223.9
cc_high	5.0 (0)	1487.7 (27)	3.7 (0)	0.0 (0)	1.2 (0)	0.9 (0)	0.0 (0)	1632.5	3131.2
gg_low	418.6 (6)	16.3 (0)	1812.0 (26)	0.8 (0)	596.6 (9)	84.7 (1)	0.0 (0)	1970.2	4899.3
gg_mid	92.4 (2)	4.4 (0)	2525.4 (43)	0.3 (0)	170.1 (3)	23.5 (0)	0.0 (0)	712.1	3528.1
gg_high	9.2 (0)	0.7 (0)	1628.7 (39)	0.0 (0)	14.8 (0)	2.1 (0)	0.0 (0)	96.7	1752.1
ss_low	2.0 (0)	10.2 (0)	318.8 (5)	5.0 (0)	134.1 (2)	64.5 (1)	0.1 (0)	4241.1	4775.8
ss_mid	0.2 (0)	3.9 (0)	41.8 (1)	5.2 (0)	4.4 (0)	4.1 (0)	0.0 (0)	2207.7	2267.4
ss_high	0.0 (0)	1.0 (0)	7.1 (0)	9.4 (0)	0.1 (0)	0.1 (0)	0.0 (0)	1668.6	1686.4
WW_low	33.7 (0)	41.3 (1)	100.2 (1)	0.1 (0)	2132.6 (30)	94.6 (1)	4.0 (0)	2637.1	5043.5
WW_mid	14.5 (0)	15.7 (0)	30.7 (1)	0.0 (0)	1583.8 (30)	36.4 (1)	1.2 (0)	1051.2	2733.5
WW_high	16.8 (0)	14.5 (0)	26.1 (0)	0.0 (0)	5689.0 (65)	43.0 (0)	1.0 (0)	1855.4	7645.9
ZZ_low	2117.1 (19)	44.9 (0)	116.4 (1)	0.2 (0)	733.4 (7)	411.2 (4)	1.8 (0)	9017.1	12442.1
ZZ_mid	295.7 (4)	4.5 (0)	17.7 (0)	0.0 (0)	144.6 (2)	208.1 (3)	0.4 (0)	4087.8	4758.8
ZZ_high	75.8 (1)	0.9 (0)	4.2 (0)	0.0 (0)	109.4 (1)	524.1 (5)	0.1 (0)	10477.7	11192.2
tautau_high	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	262.6 (2)	29.1 (0)	3777.6 (26)	16444.0	20513.3
TOTAL	51502.2	2579.2	6803.8	21.1	11831.8	1717.6	3786.2		

Yields for Z(vv) at 240 GeV

Expected yields (signifi	lcance s/√tot) for	Znunu at E = 240							
	bb	сс	gg	SS	WW	ZZ	tautau	bkg	TOTAL
bb_low	37028.7 (72)	6.4 (0)	337.8 (1)	0.0 (0)	15.1 (0)	423.7 (1)	0.4 (0)	226228.0	264040.2
bb_mid	39730.1 (113)	1.7 (0)	40.8 (0)	0.0 (0)	1.4 (0)	61.9 (0)	0.1 (0)	83828.9	123664.9
bb_high	129708.7 (289)	0.3 (0)	10.1 (0)	0.0 (0)	0.1 (0)	8.7 (0)	0.1 (0)	71205.7	200933.7
cc_low	130.5 (0)	1776.9 (3)	343.7 (1)	0.1 (0)	812.4 (1)	261.4 (0)	0.1 (0)	332054.7	335379.7
cc_mid	47.5 (0)	1665.6 (5)	74.0 (0)	0.0 (0)	71.5 (0)	29.9 (0)	0.0 (0)	93776.2	95664.6
cc_high	24.2 (0)	7168.4 (27)	25.8 (0)	0.0 (0)	12.9 (0)	6.4 (0)	0.0 (0)	64817.7	72055.3
gg_low	744.0 (3)	44.1 (0)	4432.3 (16)	1.8 (0)	977.3 (4)	133.6 (0)	0.0 (0)	66351.5	72684.4
gg_mid	339.9 (2)	21.0 (0)	4754.8 (25)	0.9 (0)	472.2 (3)	65.4 (0)	0.0 (0)	29167.5	34821.6
gg_high	162.9 (1)	13.7 (0)	14473.8 (76)	0.7 (0)	368.8 (2)	48.2 (0)	0.0 (0)	21558.8	36627.0
ss_low	3.1 (0)	33.5 (0)	1045.4 (3)	7.3 (0)	460.5 (1)	199.7 (1)	0.0 (0)	131829.1	133578.8
ss_mid	1.0 (0)	11.9 (0)	283.9 (1)	4.0 (0)	98.5 (0)	54.4 (0)	0.0 (0)	44494.3	44948.0
ss_high	1.2 (0)	41.8 (0)	641.1 (2)	77.2 (0)	107.1 (0)	83.5 (0)	0.0 (0)	161135.3	162087.2
WW_low	170.9 (0)	186.5 (0)	756.6 (1)	0.4 (0)	9842.1 (11)	523.1 (1)	0.2 (0)	813993.5	825473.4
WW_mid	91.0 (0)	96.5 (0)	199.4 (0)	0.1 (0)	7634.3 (9)	164.0 (0)	0.1 (0)	788286.0	796471.4
WW_high	84.0 (0)	55.4 (0)	112.0 (0)	0.1 (0)	16290.3 (13)	130.0 (0)	0.2 (0)	1546240.7	1562912.7
ZZ_low	9765.6 (10)	203.9 (0)	738.2 (1)	1.1 (0)	2723.3 (3)	1678.1 (2)	1.9 (0)	970946.3	986058.3
ZZ_mid	1112.0 (1)	12.1 (0)	108.0 (0)	0.2 (0)	352.4 (0)	789.1 (1)	0.1 (0)	639893.7	642267.5
ZZ_high	57.4 (0)	0.7 (0)	10.1 (0)	0.0 (0)	80.9 (0)	453.4 (1)	0.0 (0)	652726.7	653329.3
tautau_low	1.2 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.7 (0)	2.5 (0)	29.3 (0)	14886.1	14919.8
tautau_mid	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.1 (0)	0.1 (0)	16.8 (0)	3182.0	3198.9
tautau_high	0.5 (0)	0.0 (0)	0.0 (0)	0.0 (0)	2.3 (0)	1.8 (0)	5358.7 (9)	328666.1	334029.3
TOTAL	270706.6	13919.7	35191.6	115.1	52155.9	6836.2	9194.2		

Yields for Z(II) at 365 GeV

Expected yields	(significance s/√tot) fo	or Zll at E = 365							
	bb	сс	gg	SS	WW	ZZ	tautau	bkg	TOTAL
bb_low	546.9 (18)	0.2 (0)	6.9 (0)	0.0 (0)	1.2 (0)	11.0 (0)	0.0 (0)	410.1	976.4
bb_mid	2117.2 (40)	0.3 (0)	8.7 (0)	0.0 (0)	0.8 (0)	10.9 (0)	0.0 (0)	710.9	2848.8
bb_high	5392.6 (69)	0.1 (0)	0.6 (0)	0.0 (0)	0.0 (0)	1.0 (0)	0.0 (0)	686.7	6081.1
cc_low	7.5 (0)	63.1 (2)	11.9 (0)	0.0 (0)	35.5 (1)	9.2 (0)	0.0 (0)	516.3	643.5
cc_mid	3.8 (0)	109.9 (4)	3.6 (0)	0.0 (0)	5.5 (0)	2.3 (0)	0.0 (0)	518.7	643.9
cc_high	1.0 (0)	234.4 (9)	0.6 (0)	0.0 (0)	0.4 (0)	0.2 (0)	0.0 (0)	468.2	704.6
gg_low	39.9 (1)	2.6 (0)	312.9 (11)	0.1 (0)	87.3 (3)	12.4 (0)	0.0 (0)	412.8	868.1
gg_mid	9.8 (0)	0.8 (0)	385.1 (16)	0.0 (0)	25.9 (1)	3.8 (0)	0.0 (0)	168.6	594.2
gg_high	0.6 (0)	0.2 (0)	248.5 (14)	0.0 (0)	3.1 (0)	0.5 (0)	0.0 (0)	70.8	323.7
ss_low	0.4 (0)	2.2 (0)	70.7 (2)	1.3 (0)	22.1 (1)	10.8 (0)	0.0 (0)	1733.8	1841.3
ss_mid	0.0 (0)	0.1 (0)	1.6 (0)	0.3 (0)	0.1 (0)	0.1 (0)	0.0 (0)	220.6	222.8
ss_high	0.0 (0)	0.1 (0)	1.2 (0)	1.2 (0)	0.1 (0)	0.1 (0)	0.0 (0)	490.2	492.8
WW_low	5.4 (0)	12.4 (0)	36.6 (1)	0.0 (0)	746.2 (17)	28.4 (1)	0.4 (0)	1071.7	1901.0
WW_mid	0.3 (0)	0.5 (0)	0.8 (0)	0.0 (0)	64.6 (5)	1.0 (0)	0.0 (0)	81.6	148.8
WW_high	0.8 (0)	1.5 (0)	2.4 (0)	0.0 (0)	468.0 (12)	3.8 (0)	0.0 (0)	1008.8	1485.2
ZZ_low	333.6 (7)	6.4 (0)	14.7 (0)	0.0 (0)	73.9 (2)	46.5 (1)	0.1 (0)	1753.1	2228.2
ZZ_mid	111.3 (2)	0.6 (0)	4.6 (0)	0.0 (0)	34.8 (1)	59.1 (1)	0.0 (0)	3604.8	3815.2
ZZ_high	1.5 (0)	0.0 (0)	0.1 (0)	0.0 (0)	2.2 (0)	22.3 (1)	0.0 (0)	493.8	520.0
tautau_low	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	8.6 (0)	1.1 (0)	140.4 (4)	1275.9	1426.1
tautau_high	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.2 (0)	0.2 (0)	244.4 (8)	813.0	1057.8
TOTAL	279279.4	14355.0	36303.2	118.0	53736.2	7060.9	9579.6		

Yields for Z(vv) at 365 GeV

Expected yields (signi	ficance s/√tot) for	r Znunu at E = 365	5						
	bb	cc	gg	ss	WW	ZZ	tautau	bkg	TOTAL
bb_low	783.2 (14)	0.5 (0)	9.5 (0)	0.0 (0)	0.7 (0)	11.1 (0)	0.0 (0)	2231.8	3036.7
bb_mid	2103.7 (29)	0.6 (0)	13.7 (0)	0.0 (0)	0.6 (0)	11.1 (0)	0.0 (0)	3179.0	5308.7
bb_high	13285.7 (103)	0.2 (0)	3.3 (0)	0.0 (0)	0.1 (0)	4.1 (0)	0.0 (0)	3270.1	16563.4
cc_low	21.6 (0)	366.3 (3)	29.3 (0)	0.0 (0)	72.3 (1)	23.6 (0)	0.0 (0)	15539.2	16052.3
cc_mid	1.3 (0)	259.8 (6)	1.4 (0)	0.0 (0)	0.8 (0)	0.4 (0)	0.0 (0)	1487.3	1751.1
cc_high	0.1 (0)	364.3 (13)	0.3 (0)	0.0 (0)	0.1 (0)	0.0 (0)	0.0 (0)	389.2	754.0
gg_low	178.1 (2)	14.7 (0)	1351.5 (14)	0.8 (0)	473.0 (5)	65.7 (1)	0.0 (0)	7706.1	9789.8
gg_mid	6.3 (0)	1.1 (0)	603.5 (18)	0.1 (0)	33.9 (1)	4.7 (0)	0.0 (0)	449.3	1098.8
gg_high	1.4 (0)	0.7 (0)	792.7 (26)	0.0 (0)	12.4 (0)	1.7 (0)	0.0 (0)	135.5	944.4
ss_high	0.0 (0)	0.2 (0)	2.8 (0)	3.5 (0)	0.1 (0)	0.2 (0)	0.0 (0)	1057.2	1064.1
WW_low	2.5 (0)	20.3 (0)	45.9 (0)	0.0 (0)	1025.5 (6)	33.6 (0)	0.0 (0)	27146.2	28274.0
WW_mid	0.4 (0)	5.0 (0)	8.7 (0)	0.0 (0)	758.3 (7)	8.9 (0)	0.0 (0)	9647.0	10428.3
WW_high	0.0 (0)	0.5 (0)	0.7 (0)	0.0 (0)	257.3 (4)	1.2 (0)	0.0 (0)	3024.8	3284.5
ZZ_low	485.8 (1)	7.3 (0)	30.8 (0)	0.0 (0)	139.7 (0)	162.8 (1)	0.0 (0)	104380.1	105206.6
ZZ_mid	0.4 (0)	0.0 (0)	0.2 (0)	0.0 (0)	2.1 (0)	4.1 (0)	0.0 (0)	4068.9	4075.8
ZZ_high	2.0 (0)	0.0 (0)	0.6 (0)	0.0 (0)	9.7 (0)	54.5 (0)	0.0 (0)	69363.4	69430.3
tautau_low	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.1 (0)	12.0	12.2
tautau_mid	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	2.6 (0)	256.2	258.8
tautau_high	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	100.3 (4)	520.0	620.3
TOTAL	16872.4	1041.5	2894.9	4.4	2786.7	387.5	103.1		

Yields for VBF at 365 GeV

Expected yields (signifi	cance s/√tot) for	VBF at E = 365							
	bb	cc	gg	SS	WW	ZZ	tautau	bkg	TOTAL
bb_low	4112.3 (21)	1.0 (0)	42.0 (0)	0.0 (0)	5.4 (0)	60.3 (0)	0.0 (0)	32961.7	37182.7
bb_mid	3428.1 (31)	0.2 (0)	6.1 (0)	0.0 (0)	0.8 (0)	12.8 (0)	0.0 (0)	8726.8	12174.8
bb_high	22055.8 (136)	0.2 (0)	3.7 (0)	0.0 (0)	0.1 (0)	5.7 (0)	0.0 (0)	4118.1	26183.7
cc_low	19.2 (0)	166.9 (1)	40.2 (0)	0.0 (0)	127.5 (1)	29.9 (0)	0.0 (0)	51806.8	52190.5
cc_mid	14.4 (0)	632.9 (4)	22.6 (0)	0.0 (0)	30.0 (0)	12.3 (0)	0.0 (0)	26585.4	27297.5
cc_high	1.3 (0)	725.2 (14)	1.0 (0)	0.0 (0)	0.4 (0)	0.1 (0)	0.0 (0)	2037.8	2765.8
gg_low	7.6 (0)	0.5 (0)	22.7 (1)	0.0 (0)	18.4 (0)	2.7 (0)	0.0 (0)	1350.4	1402.4
gg_mid	142.1 (1)	11.8 (0)	1369.2 (8)	0.8 (0)	441.4 (3)	66.2 (0)	0.0 (0)	28699.6	30731.1
gg_high	14.0 (0)	2.1 (0)	2350.7 (28)	0.2 (0)	88.7 (1)	13.6 (0)	0.0 (0)	4784.6	7253.9
ss_low	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.0	0.0
ss_mid	0.3 (0)	0.7 (0)	48.9 (0)	0.2 (0)	21.1 (0)	8.0 (0)	0.0 (0)	14178.0	14257.2
ss_high	0.0 (0)	0.3 (0)	4.0 (0)	0.6 (0)	0.3 (0)	0.4 (0)	0.0 (0)	1630.8	1636.4
WW_low	0.9 (0)	1.3 (0)	4.5 (0)	0.0 (0)	65.4 (1)	3.5 (0)	0.0 (0)	3967.5	4043.2
WW_mid	17.6 (0)	28.2 (0)	70.2 (0)	0.0 (0)	3499.0 (11)	63.5 (0)	0.1 (0)	102060.2	105738.9
WW_high	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	26.4 (1)	0.0 (0)	0.0 (0)	291.5	317.9
ZZ_low	1436.9 (3)	39.9 (0)	85.4 (0)	0.1 (0)	452.8 (1)	310.3 (1)	0.1 (0)	241462.5	243788.0
ZZ_mid	3.7 (0)	0.1 (0)	0.4 (0)	0.0 (0)	3.2 (0)	8.3 (0)	0.0 (0)	7190.0	7205.6
ZZ_high	5.9 (0)	0.1 (0)	1.2 (0)	0.0 (0)	11.1 (0)	78.0 (0)	0.0 (0)	105630.5	105726.8
tautau_high	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	6.1 (0)	2.5 (0)	1265.2 (4)	91918.9	93192.8
TOTAL	48132.7	2652.9	6967.8	6.3	7584.6	1065.6	1368.5		

VBF 365 GeV - after selection

FCCAnalyses: FCC-ee Simulation (Delphes)

The FCC experiment - FCC-ee

- **FCC** (Future Circular Collider)
 - ~90km circular collider project
 - Two periods on functioning : **FCC-ee** & FCC-hh

- Great improvement on EW studies wrt LEP
 Higgs factory
- Great prospects for new physics (hh)

Fitting strategy for all channels

Fitting using CMS tool CombineTF to extract σ .BR in each category

7 POIs, Hbb, Hcc, Hss, Hgg, Htt, HWW, HZZ (floating parameters)

Binning :

BNL: 1 GeV bin width (projected in 5 GeV for the recoil mass)

APC : custom binning *by-eye* (negligible/little improvement compared to 1 GeV width)

Empty categories removed from the fit

Rebinned such that :

There is at least one **expected** (sum of sig+bkg) event in each bin

Add 10-6 events in empty bins to help fit convergence, without implementing a bias

Monte Carlo stats uncertainties

No systematics on the backgrounds