

Higgs mass, cross sections, CP, self-coupling

Ang Li (ang.l@cern.ch)

On behalf of the FCC Higgs/Top performance working group

FCC Physics Workshop 2025, CERN, Jan. 14, 2025

Outline

Introduction

Higgs mass

***** ZH cross-section

* CP

Self-coupling

Conclusion

Higgs: Introduction

section (fb

Ang Li

Higgs mass

- **\therefore** Current best from LHC $\delta m_H \sim 100 \text{ MeV}$
- At FCC-ee, Higgs mass will reach MeV level accuracy, ($\Gamma_H \sim 4.1 \text{ MeV}$)
- ♦ Electron and Muons final states: $e^+e^- \rightarrow ZH \rightarrow l^+l^- + XX$, $(Z \rightarrow \mu^+\mu^-, e^+e^-)$
- M_{recoil} from the Z production without measuring the Higgs production final state

1.4 1.2

0.8

0.6

0.4

0.2

124.99

124.995

$$m_{\rm recoil}^2 = (\sqrt{s} - E_{l\bar{l}})^2 - p_{l\bar{l}}^2 = s - 2E_{l\bar{l}}\sqrt{s} + m_{l\bar{l}}^2$$

Higgs mass, Fit with analytic shape

- Signal Shape: 2 Crystal-Ball with Gaussian core
- Backgrounds modelled as polynomial (3rd order)
- Signal and background injected in Combine, m_H as POI

Uncertainty Stat-Only, and w/ systematics: Higgs mass: $3.07 \text{ MeV} \rightarrow 3.97 \text{ MeV}$

Dominant Syst. Unc. : Centre-of-mass with ~ 2 MeV

 $\sqrt{s} = 240 \text{ GeV}$ $L = 10.8 ab^{-1}$

Gregorio Bernardi Jan Eysermans Ang Li DOI 10.17181

FullSim: Momentum and Angular resolution

> Muon resolutions based on $Z(\mu\mu)H$ events

- Slightly worse momentum in FullSim (residual difference in material budget, smearing)
- Angular resolutions OK

Ang Li

Electron resolutions based on Z(ee)H events

- Visibly worse momentum in FullSim
- No Bremsstrahlung recovery in CLD reconstruction
 Some work already done
 Emmanuel/Michele: Detector requirements for ECAL (Link)
 - BNL attempt for MVA-based brem recovery (Link)

Higgs mass with Full Sim (Muon)

Gregorio Bernardi Jan Eysermans Ang Li

- FullSim recoil distribution slightly worse than Delphes
- Repeat the fit producer as for the Delphes analysis
 - Fit recoil distributions with Crystal Ball and Gauss
 - Statistical-only fit, no systematics

	Uncertainty		
Delphes	5.11 MeV		
FullSim	6.41 MeV		

FullSim is 25% worse than Delphes

Higgs mass at 365 GeV

$\mathbf{At} \sqrt{s} = \mathbf{365} \ \mathbf{GeV}$

- Reduced statistics
- Broadened recoil distribution
- 365 GeV only: 27.96(28.79) MeV uncertainty on Higgs mass on Electron (Muon) channel
- Combined with 240 GeV brings it down from 3.07 MeV
 3.05 MeV (Stat-Only) ~1% improvement

Total ZH production cross-section

Measure the ZH cross-section in a Model-Independent way

- Unique to electron-positron colliders because of known initial state
- Challenge to ensure model-independent
- > Once know, determine couplings to $H \rightarrow XX$ in a model independent way

$$\sigma_{ZH} \times Br(H \to X\bar{X}) \propto \frac{g_{HZZ}^2 \times g_{HXX}^2}{\Gamma_H}$$

At FCC-ee ZH cross-section is expected to ~0.5 % accuracy $e^+e^- \rightarrow ZH \rightarrow l^+l^- + XX, (Z \rightarrow \mu^+\mu^-, e^+e^-)$

- ➢ Remove Decay-Mode dependent event selection → cos θ_{miss}
 ➢ Introduce BDT approach to keep
- decay-mode independency
- Fit BDT distribution

Total ZH production cross-section

e⁺

e FCCAnalyses: FCC-ee Simulation (Delphes) $\sqrt{s} = 240.0 \, \text{GeV}$ 26552.5 e⁺(e⁻)Z 14034 $L = 7.2 \, ab$ 30643.7 W⁺W 15811 0000 $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$ 11617.8 Rare 4989 sel Baseline no costhetamiss 66286.6 γγμμ+ 28023 Signal integral=35441.1 257813.2 $Z/\gamma \rightarrow \mu^+\mu$ 125835 Background integral=420559.1 8000 Significance=52.5 ZZ 15530 27645.4 35441.1 - Z(μ⁻μ⁺)H 32256 66.3 6000 240 GeV 4000 2000 122 124 126 128 130 132 134 136 138 140 120 Z leptonic recoil [GeV]

Gregorio Bernardi Jan Eysermans Ang Li Kevin Dewyspelaere DOI <u>10.17181</u>

365 GeV has

- Worse resolution
- But Negligible WW background

> Systematics are negligible ($0.58\% \rightarrow 0.59\%$)

Leading Systematic is BES

ZH cross-section $@\sqrt{s} = 365$ GeV

Gregorio Bernardi Jan Eysermans Ang Li Kevin Dewyspelaere DOI <u>10.17181</u>

$\delta\sigma_{ZH}/\sigma_{ZH}$	stat-only	w/ syst.
$\sqrt{s} = 240 \text{ GeV},$ 10.8 ab^{-1}	0.58%	0.59%
$\sqrt{s} = 365 \text{ GeV},$ 3.0 ab^{-1}	1.42%	1.48%

Higgs CP studies

 $\sqrt{s} = 240 \text{ GeV}$ $L = 7.2 ab^{-1}$

Jan Eysermans, Andrei Gritsan, Lucas Mandacaru Guerra, Nicholas Pinto, Valdis Slokenbergs

Link

\Rightarrow Include $H \rightarrow X$,

- $Z \to ee, \mu\mu$ $Z \to qq$ (uu, dd, ss, cc) and $f_{CP}^{HX} \equiv \frac{\Gamma_{H \to X}^{CP \text{ odd}}}{\Gamma_{H \to Y}^{CP \text{ odd}} + \Gamma_{H \to Y}^{CP \text{ even}}}$
- $Z \rightarrow bb$

* Optimal observables in leptonic final state $D_{0^-} = \frac{P(0^-)}{P(0^+) + P(0^-)}$

$$D_{CP} = \frac{P(0^+) + P(0^-)}{2\sqrt{P(0^+) * P(0^-)}}$$

- \succ $D_{0^{-}}$: Separate CP-even distribution from CP-odd.
- \succ D_{CP} : Separate two equal mixtures of CP-even and CP-odd with different phases of the CP-odd coupling.

$\diamond cos\theta_1, cos\theta_2$ and ϕ in hadronic final states

Higgs CP studies

Lepton channel:

Fit on 3D Histogram formed from D_{0^-} , D_{CP} and M_{recoil}

Jan Eysermans, Andrei Gritsan, Lucas Mandacaru Guerra, Nicholas Pinto, Valdis Slokenbergs

Link

Hadronic channel:

Fit on $\cos\theta_1$, $\cos\theta_2$ and ϕ

Jan Eysermans,

Self-coupling

Probe trilinear Higgs self-coupling λ_3 (λ_{HHH}) through single Higgs boson cross section

□Higgs-strahlung: $e^+e^- \rightarrow ZH$

WW-fusion: $e^+e^- \rightarrow \nu \overline{\nu_e} H$

□Higgs self-energy

Higgs self-coupling can be measured through the NLO variations on the total ZH cross-section thanks to sufficient statistics

Self-coupling

Elizabeth Brost, Robert Szafron, Abraham Tishelman-Charny DOI 10.17181/gtesb-a8354

- > <u>2409.11466</u> shows how to rewrite κ_{λ} in terms of C_{ϕ} : A dim-6 operator which affects the Higgs self-coupling vertex
- > Using κ_{λ} parameterization equation derived in <u>JHEP02 (2018) 178</u>, but replacing κ_{λ} with SMEFT definition:

$$\kappa_{\lambda} \longrightarrow 1 - \frac{2v^4}{m_H^2 \Lambda^2} C_{\phi} = 1 - 0.47 C_{\phi} \left(\frac{1 \text{ TeV}}{\Lambda}\right)^2 + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

> Assuming a scale of $\Lambda = 1$ TeV, can approximate to:

$$\kappa_{\lambda} \longrightarrow 1 - 0.47 C_{\phi}$$

Self-coupling

Fully-hadronic ZH analysis

- > Vary C_{ϕ} from -1 to 1 (valid range without including higher-order contributions)
- Do this for baseline IDEA (Delphes) and 2 detector variations:

Nodndx: No cluster counting information noTOF: No time-of-flight information

> Centered at $C_{\phi} = 0$ ($\kappa_{\lambda} = 1$)

Makes sense as this is the SM value

Slightly less sensitivity from the Nodndx case, as expected

Summary

Higgs mass

- ➢ At 240 GeV, Higgs mass uncertainty reach 3.07 (3.97) MeV
- Including 365 GeV, Higgs mass uncertainty improved ~ 1%
- For FullSim, in the muon channel, reached 6.41 MeV uncertainty, 25% worse than Delphes-based analysis (5.11 MeV)

ZH cross section

ZH cross-section reach ~0.59% (at 240 GeV), ~1.48% (at 365 GeV)

* CP

- ➤ Combined $f_{CP}^{HZZ} \sim \pm 3 \times 10^{-5}$
- Combined result represents ~79% of Z decays

Self-coupling

- > Cross-section in terms of SMEFT parameter C_{ϕ}
- ≻ Constraint on $C_{\phi} \in [-0.348, 0.337]$

Backup

Ang Li

FCC-ee

FCC-ee Physics Runs Ordered by Energy

Detectors

- conceptually extended from the CLIC detector design
 - full silicon tracker
 - 2T magnetic field
 - high granular silicon-tungsten ECAL
 - high granular scintillator-steel HCAL
 - instrumented steel-yoke with RPC for muon detection

- explicitly designed for FCC-ee/CepC
 - silicon vertex
 - low X₀ drift chamber
 - drift-chamber silicon wrapper
 - MPGD/magnet coil/lead preshower
 - dual-readout calorimeter: lead-scintillating/ cerenkhov fibers
- µRwell for muon detection

Higgs mass

Some extended studies performed regarding detector effects

Nominal configuration ————	Final state	Muon	Electron	Combination
	Nominal	3.92(4.74)	4.95(5.68)	3.07(3.97)
Crystal ECAL to Dual Readout	Inclusive	3.92(4.74)	4.95(5.68)	3.10(3.97)
Nominal 2 T \rightarrow field 3 T	Degradation electron resolution	3.92(4.74)	5.79(6.33)	3.24(4.12)
	Magnetic field 3T	3.22(4.14)	4.11(4.83)	2.54(3.52)
IDEA drift chamber \rightarrow CLD Si tracker \longrightarrow	Silicon tracker	5.11(5.73)	5.89(6.42)	3.86(4.55)
Impact of Beam Energy Spread	BES 6% uncertainty	3.92(4.79)	4.95(5.92)	3.07(3.98)
	Disable BES	2.11(3.31)	2.93(3.88)	1.71(2.92)
Perfect (=gen-level) momentum	Ideal resolution	3.12(3.95)	3.58(4.52)	2.42(3.40)
resolution	Freeze backgrounds	3.91(4.74)	4.95(5.67)	3.07(3.96)
	Remove backgrounds	3.08(4.13)	3.51(4.58)	2.31(3.45)

Momentum and Angular resolution

Electron resolutions based on Z(ee)H events

- Visibly worse momentum in FullSim
- No Bremsstrahlung recovery in CLD reconstruction