

From electroweak precision observables and flavours

8th FCC Physics Workshop

Lars Röhrig^{1,2}, Stéphane Monteil²

14/01/2025

¹Department of Physics – TU Dortmund University ²Laboratoire de Physique de Clermont – Université Clermont-Auvergne

Flavours at FCC-ee

■ Continuation of vibrant LHCb & Belle flavour physics programme with Z-pole statistics and boost

	Belle	LHCb	FCC-ee	XXX 1/3	
All hadron species		\checkmark	\checkmark		the ter
Boost		\checkmark	\checkmark		The the
High production σ		\checkmark			and the second sec
Negligible trigger losses	\checkmark		\checkmark		
Low backgrounds	\checkmark		\checkmark		
Initial energy constraint	\checkmark		(√)		LHCb
				- Belle	

- Additionally: defines stringent **detector requirements** → vertexing, tracking, calorimetry, particle-ID
- E.g. vertexing requirements defined by modes with missing momentum $b \rightarrow s\tau\tau$ + **new study in charm sector** $c \rightarrow u\nu\bar{\nu}$ [T. Hacheney tomorrow@2:40pm]

Today's outline:

- 1 Academic exercise of rare, radiative FCNC $b \rightarrow (d, s)\gamma$ transitions to define **EM calorimetry resolution**
- 2 Flavours in a **global context** to measure EWPOs: $\{R_b, R_c, R_s\}$ and $\{A_{FB}^b, A_{FB}^s\}$

EM calorimetry requirements from radiative decays

- $b
 ightarrow (d,s)\gamma$ probe NP in loop diagrams in addition to the photon dipole operator C_7
- However: $b \rightarrow d\gamma$ signal dominated by $b \rightarrow s\gamma$ background

 \rightarrow $B_s \rightarrow K^* \gamma$ **not yet observed**, estimate event yield:

$$\frac{N_{B_d}}{N_{B_s}} \approx \frac{f_{b \to B_d}}{f_{b \to B_s}} \cdot \left| \frac{V_{ts}}{V_{td}} \right|^2 \approx 92$$
$$\rightarrow N_{B_d} \approx 30 \cdot 10^6 \implies N_{B_s} \approx 33 \cdot 10^4$$

• Would allow to directly measure $\frac{F_{B_d \to K_*}}{F_{B_s \to K_*}} \left| \frac{V_{ts}}{V_{td}} \right|^2$, but depends on $\Delta m = m_{B_d} - m_{B_s} = 87$ MeV resolution \rightarrow Limiting experimental factor: **EM calorimetry resolution**

 \rightarrow **Goal:** Estimate precision of $\left|\frac{V_{td}}{V_{ts}}\right|$ as function of the stochastic term of EM energy resolution

EM calorimetry requirements from radiative decays

- Analysis based on $10^6 B_d \rightarrow K^* \gamma$ events (simulated with PYTHIA8 + EvtGen + default IDEA card)
- Emulate B_s signal by scaling B_d candidates
- Use $K^* \to K\pi$ from reconstructed particles, smear photon momentum based on MC information

→ Complicated to even fit B_s signal yield with $12 \% / \sqrt{E_\gamma}$ resolution + **no backgrounds** included + perfectly known signal-tail shapes

- Pseudoexperiments with fixed shape parameters, but floating signal yields (\rightarrow floating $\left|\frac{V_{td}}{V_{te}}\right|$)
- Extract precision of $\left|\frac{V_{td}}{V_{ts}}\right|$ from 1 σ Gaussian fit as function of EM energy resolution

• In view of the consistency check, the precision on the determination from $\Delta m_s/\Delta m_d$ is indicated \rightarrow Only for an EM resolution **below** 5%/ $\sqrt{E_{\gamma}}$ comparative result w.r.t current precision $\rightarrow O(5\%/\sqrt{E_{\gamma}})$ well **in reach with crystals** [2312.07365]

Flavours in a global context

- Precision flavour programme is key to probe NP effects in the SM
- Also become important in the context of **electroweak precision observables:** R_b and A_{FB}^b [Ref.] → probe NP in radiative and vertex corrections involving top quarks

- **Background-free** hemisphere tag for R_b and A_{FB}^b possible at FCC-ee with exclusive tagger $\rightarrow \mathcal{O}(\sigma(R_b)/R_b) = \mathcal{O}(\sigma(A_{\text{FB}}^b)/A_{\text{FB}}^b) = 0.01\%$
- Central role to achieve $\sigma_{\rm stat.} \approx \sigma_{\rm syst.}$
- Concept application for R_{c,s} and A^{c,s}_{FB} more complicated, but ongoing

Measuring R_c with $\bar{D}^0 \to K^+\pi^-$ decays

• Double-tag equations from R_b measurement extended in case of R_c to benefit from excl. *b*-tagger:

$$\begin{split} N_{\text{ST}}^{c} &= 2N_{Z \to \text{had.}} \left(R_c \varepsilon_c^c + R_b \varepsilon_b^c + R_{uds} \varepsilon_{uds}^c \right) \\ N_{\text{DT}}^{c} &= N_{Z \to \text{had.}} \left(R_c (\varepsilon_c^c)^2 C_c + R_b (\varepsilon_b^c)^2 C_b + R_{uds} (\varepsilon_{uds}^c)^2 C_{uds} \right) \\ N_{\text{DT}}^{cb} &= N_{Z \to \text{had.}} \left(R_c \varepsilon_c^c \varepsilon_c^b C_{cb} + R_b \varepsilon_b^b \varepsilon_b^c C_{bc} + R_{uds} \varepsilon_{uds}^{uds} \varepsilon_{uds}^c C_{uds} \right) \end{split}$$

- ε_i^j : tag flavour j of quark-flavour i
- \rightarrow Simultaneously measure { $R_c, \varepsilon_c^c, \varepsilon_b^c$ }, remaining inputs { R_b, ε_b^b } from excl. *b*-tagger

Reconstruction results using winter2023 samples:

$$ightarrow arepsilon_{c}^{c} = 6.4 \cdot 10^{-3}, \ arepsilon_{b}^{c} = 0.4 \cdot 10^{-3}, \ arepsilon_{uds}^{c} = 1.5 \cdot 10^{-6}$$

$$\rightarrow \sigma_{\rm stat.}(R_c) = 3 \cdot 10^{-5}$$

• Impact of ε_b^c significant for $\sigma_{syst.}(R_c)$:

$$\rightarrow \sigma_{\text{syst.}}(R_c, \text{from } \varepsilon_b^c) = 6.6 \cdot 10^{-5}$$

Selection can be refined to remove b contamination

Commensurate $\sigma_{syst.}$ and $\sigma_{stat.}$ in reach

Measuring R_s with $\phi(1020) \rightarrow K^+K^-$ decays

- Multivariate s-tagger not capable to suppress background efficiently [2202.03285]
- Beam-like $|K^-\rangle = |\overline{u}s\rangle$ originating from interaction region suffer from *u*-quark **contamination**
- $\rightarrow |\phi(1020)\rangle \approx |s\bar{s}\rangle$ meson possible candidate to measure R_s ($A_{\sf FB}^s$ requires charge tag!)
- Validate performance from reconstructed $\phi(1020) \rightarrow K^+K^-$ mesons using winter2023 samples

• Purity
$$\approx 98\%$$
 for $E(\phi(1020)) > 35 \text{ GeV}$
 $\rightarrow \varepsilon_s^s = 10^{-3}, \ \varepsilon_c^s = 2 \cdot 10^{-5}, \ \varepsilon_{udb}^s = 2 \cdot 10^{-6}$

Measuring R_s with $\phi(1020) \rightarrow K^+K^-$ decays

- Multivariate s-tagger not capable to suppress background efficiently [2202.03285]
- Beam-like $|K^-\rangle = |\overline{u}s\rangle$ originating from interaction region suffer from *u*-quark **contamination**
- \rightarrow $|\phi(1020)\rangle \approx |s\bar{s}\rangle$ meson possible candidate to measure R_s ($A_{\sf FB}^s$ requires charge tag!)
 - Validate performance from reconstructed $\phi(1020) \rightarrow K^+K^-$ mesons using winter2023 samples

• Purity \approx 98% for $E(\phi(1020)) >$ 35 GeV

$$ightarrow arepsilon_s^s = 10^{-3}$$
, $arepsilon_c^s = 2\cdot 10^{-5}$, $arepsilon_{udb}^s = 2\cdot 10^{-6}$

• $Z \rightarrow c\bar{c}$ contribution significant for $\sigma_{\text{syst.}}(R_s)$

$$\mathcal{O}(\sigma(R_s)) = 3 \cdot 10^{-4}$$
 in reach

s-quark charge measurement

- A_{FB}^{s} relies on the charge tag of the s quark
- $\rightarrow\,$ Unambigious, pure charge tagger would vanish the systematics
- \rightarrow Use **beam-like** ($E(\Xi^-) \gtrsim 35 \text{ GeV}$) $|\Xi^-\rangle = |ds\bar{s}\rangle$ in $\Xi^- \rightarrow \Lambda \pi^-$ decays
 - Complication: $\tau(\Xi^{-}) = 1.6 \cdot 10^{-10} \text{ s} \Rightarrow \langle L(\Xi^{-}) \rangle = 1.2 \text{ m}$
 - Significant fraction of produced Ξ^- final-state particles **outside of tracking volume**

 Ξ^{-}

s-quark charge measurement

- A_{FB}^{s} relies on the charge tag of the s quark
- $\rightarrow\,$ Unambigious, pure charge tagger would vanish the systematics
- \rightarrow Use **beam-like** ($E(\Xi^-) \gtrsim 35 \text{ GeV}$) $|\Xi^-\rangle = |ds\bar{s}\rangle$ in $\Xi^- \rightarrow \Lambda \pi^-$ decays
 - Complication: $\tau(\Xi^{-}) = 1.6 \cdot 10^{-10} \text{ s} \Rightarrow \langle L(\Xi^{-}) \rangle = 1.2 \text{ m}$
 - Significant fraction of produced Ξ^- final-state particles outside of tracking volume
 - For now: vertex Λ candidates with additional π^- track with $\mathcal{O}(\varepsilon_{
 m reco}) = 15\%$

 Ξ^{-}

A_{FB}^{s} : some numbers and outlook

• Purity above > 95% in reach for Ξ^- baryons

A_{FB}^{s} : some numbers and outlook

- Purity above > 95% in reach for Ξ^- baryons
- Requires an adequate correction for detector acceptance effects
- \rightarrow However: for $E(\Xi^{-}) > 35$ GeV accurate approximation of *s*-quark direction

A_{FB}^{s} : some numbers and outlook

- Purity above > 95% in reach for Ξ^- baryons
- Requires an adequate correction for detector acceptance effects
- \rightarrow However: for $E(\Xi^-) > 35 \text{ GeV}$ accurate approximation of *s*-quark direction

- Full analysis lacks the proper analysis tools
- All numbers presented rely on PYTHIA8's hadronisation fraction for $s \rightarrow \{\phi(1020), \Xi^-\}$

 $\mathcal{O}(\sigma(A_{\mathsf{FB}}^s)) = 1.5 \cdot 10^{-4}$ in reach

A^{s}_{FB} : some numbers and outlook

- Purity above > 95% in reach for Ξ^- baryons
- Requires an adequate correction for detector acceptance effects
- \rightarrow However: for $E(\Xi^-) > 35 \text{ GeV}$ accurate approximation of *s*-quark direction

- Full analysis lacks the proper analysis tools
- All numbers presented rely on PYTHIA8's hadronisation fraction for $s \rightarrow \{\phi(1020), \Xi^-\}$

$$\mathcal{O}(\sigma(A^s_{\mathsf{FB}})) = 1.5 \cdot 10^{-4}$$
 in reach

- Discussion of systematic uncertainties like QCD corrections to be done
- $\rightarrow\,$ Expected to be subdominant in presence of energy cuts

Conclusions & Outlook

- Flavour physics programme at FCC-ee opens up a multitude to probe NP effects
- $\rightarrow\,$ Defines stringent detector requirements, e. g. EM calorimetry resolution

Conclusions & Outlook

- Flavour physics programme at FCC-ee opens up a multitude to probe NP effects
- $\rightarrow\,$ Defines stringent detector requirements, e.g. EM calorimetry resolution
- Also allows to study EWPOs at a new level of precision
- Complement EWPOs in the charm sector with A^c_{FB} (but no showstoppers identified so far)

Backup

R_c : kinematic cuts in the phase space

Simple cuts to suppress backgrounds from the most obvious processes

 $\rightarrow \ \mathsf{FD}(\bar{D}^{0}) < 3 \, \mathrm{mm}, \ d_{0}(\mathcal{K}) < 1 \, \mathrm{mm}, \ N_{\mathsf{SL}, \mathsf{hem}.} = 0, \ p(\bar{D}^{0}) > 16 \, \mathsf{GeV}, \ \Omega = \frac{\vec{f} \cdot \vec{p}(\bar{D}^{0})}{|\vec{f}| \cdot |\vec{p}(\bar{D}^{0})|} < -9$

A_{FB}^{s} : correction for detector acceptance effects

Angular acceptance given by volume infront of final-state decay particles

Exclusive reconstruction: included B^+ decay-modes

Mode	$\operatorname{Br}(B^+ \to XY) / \%$	$ $ Br(X \rightarrow final stat	e)/%	\sum Br / %
J/ψ K $^+$	0.102 ± 0.002	$igg egin{array}{c} J/\psi ightarrow e^+e^- \ J/\psi ightarrow \mu^+\mu^- \end{array}$	$\begin{array}{c} 5.971 \pm 0.032 \\ 5.961 \pm 0.033 \end{array}$	0.012
$egin{array}{lll} ar{D}^0 ho^+ \ ar{D}^0 \pi^+ \pi^- \pi^+ \ ar{D}^0 \pi^+ \ ar{D}^0 \pi^+ \ ar{D}^0 \pi^+ \end{array} _{D^*(2010)^+} \pi^- \pi^- \pi^0 \end{array}$	$\begin{array}{c} 1.340 \pm 0.180 \\ 0.560 \pm 0.210 \\ 0.468 \pm 0.013 \\ 10.160 \pm 4.740 \end{array}$	$ \begin{vmatrix} \bar{D}^0 \rightarrow K^+ \pi^- \pi^0 \\ \bar{D}^0 \rightarrow K^+ \pi^- 2\pi^0 \\ \bar{D}^0 \rightarrow K^+ 2\pi^- \pi^+ \\ \bar{D}^0 \rightarrow K^+ 2\pi^- \pi^+ \pi^0 \\ \bar{D}^0 \rightarrow K^+ \pi^- \end{vmatrix} $	$\begin{array}{c} 14.400 \pm 0.500 \\ 8.860 \pm 0.230 \\ 8.220 \pm 0.140 \\ 4.300 \pm 0.400 \\ 3.947 \pm 0.030 \end{array}$	0.545 0.723 0.909 0.950
$D^- \pi^+ \pi^-$	0.107 ± 0.005	$ \begin{vmatrix} D^+ \to K^- 2\pi^+ \\ D^+ \to K^- 2\pi^+ \pi^0 \end{vmatrix} $	$\begin{array}{c} 9.380 \pm 0.160 \\ 6.250 \pm 0.180 \end{array}$	0.966
$D_s^+ \bar{D}^0$	0.900 ± 0.090	$ \begin{array}{ c c c c c } & D_{s}^{+} \to [\pi^{+}\pi^{-}\pi^{0}]_{\eta} \pi^{+}\pi^{0} \\ & D_{s}^{+} \to [\pi^{+}\pi^{-}\pi^{0}]_{\eta}[\pi^{+}\pi^{0}]_{\rho^{+}} \\ & D_{s}^{+} \to K^{+}K^{-}\pi^{+}\pi^{0} \\ & D_{s}^{+} \to K^{+}K^{-}\pi^{+} \\ & D_{s}^{+} \to 2\pi^{+}\pi^{-} \\ & D_{s}^{+} \to K^{+}K^{-}2\pi^{+}\pi^{-} \\ & D_{s}^{+} \to 3\pi^{+}2\pi^{-} \end{array} $	$\begin{array}{c} 9.500 \pm 0.500 \\ 8.900 \pm 0.800 \\ 5.500 \pm 0.240 \\ 5.380 \pm 0.100 \\ 1.080 \pm 0.040 \\ 0.860 \pm 0.150 \\ 0.790 \pm 0.080 \end{array}$	1.081

Exclusive reconstruction: included B_d^0 decay-modes

Mode	$Br(B^0 \rightarrow final state) / \%$	\sum Br / %
$J/\psi~{ m K}^+\pi^-$	0.014	0.014
$D^*(2010)^- \pi^+ \pi^+ \pi^- \pi^0$	0.473	0.487
$D^{*}(2010)^{-}\pi^{+}\pi^{0}$	0.403	0.891
$D^*(2010)^-\pi^+\pi^+\pi^-$	0.194	1.084
$D^- \pi^+ \pi^+ \pi^-$	0.094	1.178
$D^{*}(2010)^{-} \pi^{+}$	0.074	1.252
$D^*(2010)^- D_s^+$	0.069	1.321
$D^- \pi^+$	0.039	1.360
$D^- D_s^+$	0.036	1.396
$D^{*}(2010)^{-} D^{0} K^{+}$	0.026	1.422
$D^- D^0 K^+$	0.007	1.429

Exclusive reconstruction: included B_s^0 decay-modes

Mode	$\operatorname{Br}(B^0_s \to \operatorname{final state}) / \%$	\sum Br / %
$D_{s}^{-} [\pi^{+}\pi^{0}]_{ ho^{+}}$	0.218	0.218
$D_s^- \pi^+ \pi^+ \pi^-$	0.195	0.413
$D^*(2010)^-\pi^+\pi^+\pi^-$	0.194	0.607
$D_s^-\pi^+$	0.095	0.702
$D_s^+ D_s^-$	0.045	0.747
$D^0~K^-\pi^+$	0.041	0.789

Exclusive reconstruction: included Λ_b^0 decay-modes

Mode	$\operatorname{Br}(\Lambda_b^0 \to XY) / \%$	$Br(X \to fina)$	state) / %	\sum Br / %
$\Lambda^0_b o \Lambda^+_c \pi^+ \pi^- \pi^-$	0.760 ± 0.110	$\left \begin{array}{c} \Lambda_c^+ \to p \mathcal{K}^- \pi^+ \\ \Lambda_c^+ \to p \mathcal{K}^- \pi^+ \pi^0 \end{array}\right.$	$\begin{array}{c} 6.280 \pm 0.320 \\ 4.460 \pm 0.300 \end{array}$	0.082

Increasing the tagging efficiency

- For *R_b*, also partially reconstructed candidates are *b*-taggers
- Releasing the B^+ -mass constraint significantly increases ε_b

Quantitative summary

B^+ decay-mode	$\varepsilon_{ m reco}$ / %	Purity / %	B ⁺ signal width / MeV
$ar{D}^0\pi^+ ightarrow [K^+\pi^-]_{ar{D}^0}\pi^+$	77.17 ± 2.99	99.93 ± 0.11	7.0
$ar{D}^0\pi^+ ightarrow [{\cal K}^+\pi^-\pi^0]_{ar{D}^0}\pi^+$	64.89 ± 1.41	99.89 ± 0.09	32.8
$ar{D}^0\pi^+ ightarrow [\mathcal{K}^+\pi^-\pi^0\pi^0]_{ar{D}^0}\pi^+$	49.95 ± 2.68	99.81 ± 0.07	35.1
$ar{D}^0 \pi^+ o [{\cal K}^+ \pi^- \pi^- \pi^+]_{ar{D}^0} \pi^+$	72.63 ± 6.90	99.73 ± 0.27	9.7
$D_s^+ \bar{D}^0 \to [K^+ K^- \pi^+]_{D_s^+} [K^+ \pi^-]_{\bar{D}^0}$	78.57 ± 22.39	100.00	5.6
$J/\psi K^+ ightarrow [\ell^+ \ell^-]_{J/\psi} ar{k^+}$	85.87 ± 4.13	99.90 ± 0.24	7.4

b-quark partial-decay width ratio

R_b : systematic uncertainties from ALEPH

- Systematic uncertainties enter where quantities have been estimated from MC simulations: ε_{udsc} , ΔC_q
- For ε_{udsc} , predictions depend on assumed impact parameter resolution and efficiency for vertex-detector hits to be associated to a track
- Physical parameters that enter the calculation of ε_{udsc}

$\Delta R_b =$	± 0.00047	Monte Carlo statistics
	± 0.00017	Event selection
	± 0.00084	Physics uncertainty
	± 0.00046	Tracking uncertainty
	± 0.00027	Hemisphere correlations uncertainty

R_b : systematic uncertainties comparison

Gluon splitting rate $g_{b\bar{b}} = 0.00247(56)$ as source of $\sigma_{syst.}(R_b)$ negligible compared to ΔC_b

$$N_b = 2N_Z \left(R_b \varepsilon_{b_{1,2}}^{Z \to b\bar{b}} \varepsilon_{E_B}^{Z \to b\bar{b}} + (1 - R_b) g_{b\bar{b}} \varepsilon_{udsc_{1,2}}^{g \to b\bar{b}} \varepsilon_{E_B}^{g \to b\bar{b}} \right)$$

*R*_b: systematic uncertaintes

- PV reconstruction main source of $\Delta C_b \neq 0$
- However: detector acceptance effects + gluon splitting studied as well

Luminous region selection

Selection of tracks outside of luminous region to overcome PV limitations

• Maximise $v_1 = d_0/\sqrt{\sigma_{d_0}^2 + \sigma_v^2}$ and $v_2 = z_0/\sqrt{\sigma_{z_0}^2 + \sigma_v^2}$ w.r.t. specific FOM

Luminous region selection: FOMs

• Evaluate \overline{D}^0 and B^+ significance + mean number of secondary tracks

 $\rightarrow v_1 \leq 3 \& v_2 \leq 8$

ΔC_b : systematic uncertainties

- First investigation of systematic uncertainties for ΔC_b
- Varying inputs: DIRE parton shower, renormalisation scale, *b* fragmentation, track ID
- ightarrow No significant impact on ΔC_b

b-quark forward-backward asymmetry

Different *b*-quark direction estimators

- Usual choices at LEP: thrust-axis
- Existing study @FCC-ee: *b*-quark direction from *b*-tagged jets
- Taking into account jet-reconstruction efficiency effects

Calculations of C_{QCD} for jet-jet acollinearity

• C_{QCD} as function of acollinearity $\cos(\zeta(x,\bar{x})) = \frac{x\bar{x}+\mu^2+2(1-x-\bar{x})}{\sqrt{x^2-\mu^2}\sqrt{\bar{x}^2-\mu^2}}$ with $x = 2E_b/\sqrt{s}$ and $\mu = 2m_b/\sqrt{s}$

$$C_{QCD} \approx \int_{x_{min}}^{x_{max}} \int_{\bar{x}_{min}(x)}^{\bar{x}_{max}(x)} \frac{2\bar{x}^2(1 - \cos(\zeta(x, \bar{x})))}{3(1 - x)(1 - \bar{x})} \, d\bar{x} \, dx \, dx$$

$$I(x, \bar{x}) = \frac{(x^2 + \bar{x}^2) \cdot (1 - \cos(\zeta(x, \bar{x})))}{3(1 - x)(1 - \bar{x})}$$

Impact on SM parameters: weak mixing angle

• Precision of A_{FB}^b impacts precision of $\sin^2(\theta_{\text{W}})$

$$A_{\text{FB}} = rac{3}{4} A_e A_b$$
, with $A_f = rac{2v_f a_f}{v_f^2 + a_f^2}$,
 $a_f = T_f$, and $v_f = T_f - 2Q_f \sin^2(\theta_W)$

 \rightarrow 3× more sensitivity from A^b_{FB} to $\sin^2(\theta_W)$ than from A^{μ}_{FB} (fractional charge)

Impact on SM parameters: top-quark mass

• Precision of m_t from top-quark loops in Z propagator and $\sin^2(\theta_{W}^{\text{eff.}}) = \xi \sin^2(\theta_W)$ and $\xi = 1 + \Delta \rho \cot^2(\theta_W)$

$$\Delta \rho = 3x_t + 3x_t^2(19 - \pi^2)$$
, and $x_t = \frac{G_F m_t^2}{8\sqrt{2}\pi^2}$

 In addition: account for vertex corrections with top quarks

$$\begin{split} \Delta \tau &= -2x_t - \frac{G_F m_Z^2}{6\sqrt{2}\pi^2} \cdot \left(1 - \cos(\theta_W)\right) \ln\left(\frac{m_t}{m_W}\right) - 2x_t^2 \cdot \left(2 - \frac{\pi^2}{3}\right) ,\\ \Rightarrow \quad v_f \to \bar{v}_f &= \sqrt{\rho_f} \left(T_f - \frac{2Q_f \sin^2(\theta_W^{\text{eff}})}{1 + \Delta \tau}\right) ,\\ \Rightarrow \quad a_f \to \bar{a}_f &= \sqrt{\rho_f} T_f , \quad \text{with} \quad \rho_f &= \frac{(1 + \Delta \tau)^2}{1 - \Delta \rho} \end{split}$$

