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• use quantum information observables and methods to test possible 
anomalous couplings of the τ lepton to gauge bosons. 

• study entanglement and the violation of Bell inequalities by 
analyzing the spin correlations of the tau lepton pairs.

Focusing on                                , FCC-ee would then allow us to:

events characterized by a lower CM energy up to
→
s = 89 GeV, corresponding to the last three bins

of Fig. 2.4 which comprise 99% of the events.
The angular distributions of the pion momenta in the rest frame of the ω -lepton pairs give, as

the desired, the coe!cients of the polarization density matrix. In the following we compare the
results obtained from analytical computations to the values indicated by the Monte Carlo simulations
performed with and without the ISR and detector resolution e”ects.

3 Results

Q uantum tomography gives us the means to study entanglement and Bell inequality violation
in the process

e
+
e
→ ↑ Z, ε ↑ ω

+
ω
→ ↑ ϑ

+
ϑ
→
ϖω ϖ̄ω (3.1)

as it will be available at the FCC-ee.

3.1 Theoretical quantum tomography: analytic results

Let us first look at the analytic results for the parton level process e+e→ ↑ ω
+
ω
→. This study already

provides most of the information about the actual physical process, that is, the one inclusive of the
hadronic decays of the ω leptons.

Figure 3.1: Analytic solutions for the concurrence (left) and the Bell inequality violation (right) in the parton level

process e+e→ → ω+ω→
. The presence of entanglement is signaled by C > 0 and the violation of Bell inequalities by

m12 > 1.

The values of the concurrence C and the Horodecki’s condition m12 for energies that range from the
production threshold up to 350 GeV are shown in Fig. 3.1. The plot shows the presence of three distinct
regimes as we vary the CM energy. At low energy the process is dominated by the photon exchange,
yielding the maximal value of the concurrence and of the Bell inequality violation for # = ϑ/2. At
energies close to the Z boson resonance the process is instead dominated by this particle. In Fig. 3.1
this region corresponds to the thin slice centered around

→
s ↓ 90 GeV. At higher energies both the

particles equally contribute to the process and the maximal concurrence and Bell inequality violation

10



Theoretical Quantum Tomography

3

An ensemble of bipartite systems, each formed by two qubits, is 
described by a 4x4 density matrix  

2.1 Quantum tomography at work

The density matrix describing the polarization state of a quantum system composed by two fermions
can be written as

ω =
1

4



1 → 1 +
∑

i

B+
i (εi → 1) +

∑

j

B→
j (1 → εj) +

∑

i,j

Cij (εi → εj)



, (2.1)

with i, j = r, n, k and εi being the Pauli matrices. The decomposition refers to a right-handed
orthonormal basis, {n, r,k} and the quantization axis for the polarization is taken along k, so that
εk ↑ ε3. In the fermion-pair center of mass frame we have

n =
1

sin!
(p↓ k), r =

1

sin!
(p↔ k cos!) , (2.2)

where k is the direction of the ϑ
+ momentum and ! is the scattering angle. We take p · k = cos!,

with p being the direction of the incoming e
+.

The coe”cients B±
i in Eq. (2.1) give the polarizations of the individual fermions, whereas the

coe”cients Cij encode the spin correlations. By using Tr (εiεj) = 2ϖij and Tr (εi) = 0, we have:

B+
i = Tr [ω(εi → 1)] , B→

i = Tr [ω(1 → εi)] , Cij = Tr [ω(εi → εj)] . (2.3)

More details on these definitions and quantum tomography in general can be found in [5].
The quantum tomography of the polarization density matrix is completed once the coe”cients

Bi and Cij have been found. Given a Lagrangian for a theory, these quantities can be computed
from the scattering amplitudes describing the underlying process. Experimentally, or in Monte Carlo
simulations, they can instead be reconstructed by tracking the angular distribution of suitable ϑ -pair
decay products. In particular, for events where each ϑ lepton decays to a single pion and a neutrino,
we have

1

ε

dε

d cos ϱ±i
=

1

2

(
1↗ B±

i cos ϱ±i
)
, (2.4)

1

ε

dε

d cos ϱ+i d cos ϱ→j
=

1

4

(
1 + Cij cos ϱ+i cos ϱ→j

)
, (2.5)

in which cos ϱ±i are the projections of the ς± momentum direction on the {n, r,k} basis, as computed
in the rest frame of the decaying ϑ

±. Figures 2.1 and 2.2 show the relative frequencies of the values
obtained for the involved cosines and cosine products from the actual Monte Carlo simulation we have
used in this work. All the histograms are normalized to the total number, 107, of simulated events.
The average values of these these quantities, proportional to the Bi and Cij coe”cients, encode the
tomographic information and do not vanish provided the corresponding histograms are not symmetric
with respect to the zero value.

Whenever the average of the product of two cosine (in the Cij coe”cients) di#er from the product
of the averages of the single cosines (in the Bi coe”cients) we have non vanishing correlation and,
possibly, quantum entanglement.

2.2 Entanglement and Bell inequality violation

Given a two-qubit, 4↓ 4 density matrix ω as in (2.1), its concurrence can be explicitly constructed by
using the auxiliary matrix

R = ω (εy → εy) ω
↑ (εy → εy) , (2.6)
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where i, j, refer to the directions used to define the orientation of the spin 
vectors in space: the {n, r, k} triad defined, in the CoM frame, by

k
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events characterized by a lower CM energy up to
→
s = 89 GeV, corresponding to the last three bins

of Fig. 2.4 which comprise 99% of the events.
The angular distributions of the pion momenta in the rest frame of the ω -lepton pairs give, as

the desired, the coe!cients of the polarization density matrix. In the following we compare the
results obtained from analytical computations to the values indicated by the Monte Carlo simulations
performed with and without the ISR and detector resolution e”ects.

3 Results

Q uantum tomography gives us the means to study entanglement and Bell inequality violation
in the process

e
+
e
→ ↑ Z, ε ↑ ω

+
ω
→ ↑ ϑ

+
ϑ
→
ϖω ϖ̄ω (3.1)

as it will be available at the FCC-ee.

3.1 Theoretical quantum tomography: analytic results

Let us first look at the analytic results for the parton level process e+e→ ↑ ω
+
ω
→. This study already

provides most of the information about the actual physical process, that is, the one inclusive of the
hadronic decays of the ω leptons.

Figure 3.1: Analytic solutions for the concurrence (left) and the Bell inequality violation (right) in the parton level

process e+e→ → ω+ω→
. The presence of entanglement is signaled by C > 0 and the violation of Bell inequalities by

m12 > 1.

The values of the concurrence C and the Horodecki’s condition m12 for energies that range from the
production threshold up to 350 GeV are shown in Fig. 3.1. The plot shows the presence of three distinct
regimes as we vary the CM energy. At low energy the process is dominated by the photon exchange,
yielding the maximal value of the concurrence and of the Bell inequality violation for # = ϑ/2. At
energies close to the Z boson resonance the process is instead dominated by this particle. In Fig. 3.1
this region corresponds to the thin slice centered around

→
s ↓ 90 GeV. At higher energies both the

particles equally contribute to the process and the maximal concurrence and Bell inequality violation
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+ momentum and ! is the scattering angle. We take p · k = cos!,

with p being the direction of the incoming e
+.
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i = Tr [ω(1 → εi)] , Cij = Tr [ω(εi → εj)] . (2.3)

More details on these definitions and quantum tomography in general can be found in [5].
The quantum tomography of the polarization density matrix is completed once the coe”cients

Bi and Cij have been found. Given a Lagrangian for a theory, these quantities can be computed
from the scattering amplitudes describing the underlying process. Experimentally, or in Monte Carlo
simulations, they can instead be reconstructed by tracking the angular distribution of suitable ϑ -pair
decay products. In particular, for events where each ϑ lepton decays to a single pion and a neutrino,
we have
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in which cos ϱ±i are the projections of the ς± momentum direction on the {n, r,k} basis, as computed
in the rest frame of the decaying ϑ

±. Figures 2.1 and 2.2 show the relative frequencies of the values
obtained for the involved cosines and cosine products from the actual Monte Carlo simulation we have
used in this work. All the histograms are normalized to the total number, 107, of simulated events.
The average values of these these quantities, proportional to the Bi and Cij coe”cients, encode the
tomographic information and do not vanish provided the corresponding histograms are not symmetric
with respect to the zero value.

Whenever the average of the product of two cosine (in the Cij coe”cients) di#er from the product
of the averages of the single cosines (in the Bi coe”cients) we have non vanishing correlation and,
possibly, quantum entanglement.

2.2 Entanglement and Bell inequality violation

Given a two-qubit, 4↓ 4 density matrix ω as in (2.1), its concurrence can be explicitly constructed by
using the auxiliary matrix

R = ω (εy → εy) ω
↑ (εy → εy) , (2.6)
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with non-negative  eigenvalues                                      
as:                                                                   

                                                                   .

Figure 2.2: Relative frequencies of the values of the products cos ω+i cos ω→j , i, j = n, r, k, obtained with the Monte Carlo

simulation of the ε -lepton pairs decaying into a charged pion plus a neutrino, the momentum of which is reconstructed.

The histograms are normalized to the total number of events.

where ω
→ denotes the matrix with complex conjugated entries. Although non-Hermitian, the matrix

R has non-negative eigenvalues; denoting with ri, i = 1, 2, 3, 4, their square roots and assuming r1 to
be the largest, the concurrence C can be expressed as [6]

C = max
(
0, r1 → r2 → r3 → r4

)
. (2.7)

The concurrence is a quantitative estimate of the amount of entanglement in the two-qubit system.
Entanglement is present if C > 0 and maximal for C = 1.

To assess the possible violation of Bell inequalities we resort instead to the matrix C in Eq. (2.5)
and build, with its transpose CT , the symmetric, positive, 3 ↑ 3 matrix M = CCT ; its eigenvalues
m1, m2, m3 can be ordered in increasing order: m1 ↓ m2 ↓ m3. Then, the two-spin state ω in (2.1)
violates the Bell inequality [7], in its original as well as in the equivalent Clauser-Horne-Shimony-Holt

6
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simulations, they can instead be reconstructed by tracking the angular distribution of suitable ϑ -pair
decay products. In particular, for events where each ϑ lepton decays to a single pion and a neutrino,
we have

1

ε

dε

d cos ϱ±i
=

1

2

(
1↗ B±

i cos ϱ±i
)
, (2.4)

1

ε

dε

d cos ϱ+i d cos ϱ→j
=

1

4

(
1 + Cij cos ϱ+i cos ϱ→j

)
, (2.5)

in which cos ϱ±i are the projections of the ς± momentum direction on the {n, r,k} basis, as computed
in the rest frame of the decaying ϑ

±. Figures 2.1 and 2.2 show the relative frequencies of the values
obtained for the involved cosines and cosine products from the actual Monte Carlo simulation we have
used in this work. All the histograms are normalized to the total number, 107, of simulated events.
The average values of these these quantities, proportional to the Bi and Cij coe”cients, encode the
tomographic information and do not vanish provided the corresponding histograms are not symmetric
with respect to the zero value.

Whenever the average of the product of two cosine (in the Cij coe”cients) di#er from the product
of the averages of the single cosines (in the Bi coe”cients) we have non vanishing correlation and,
possibly, quantum entanglement.

2.2 Entanglement and Bell inequality violation

Given a two-qubit, 4↓ 4 density matrix ω as in (2.1), its concurrence can be explicitly constructed by
using the auxiliary matrix

R = ω (εy → εy) ω
↑ (εy → εy) , (2.6)

4
with non-negative  eigenvalues                                      
as:                                                                   

                                                                   .

Figure 2.2: Relative frequencies of the values of the products cos ω+i cos ω→j , i, j = n, r, k, obtained with the Monte Carlo

simulation of the ε -lepton pairs decaying into a charged pion plus a neutrino, the momentum of which is reconstructed.

The histograms are normalized to the total number of events.

where ω
→ denotes the matrix with complex conjugated entries. Although non-Hermitian, the matrix

R has non-negative eigenvalues; denoting with ri, i = 1, 2, 3, 4, their square roots and assuming r1 to
be the largest, the concurrence C can be expressed as [6]

C = max
(
0, r1 → r2 → r3 → r4

)
. (2.7)

The concurrence is a quantitative estimate of the amount of entanglement in the two-qubit system.
Entanglement is present if C > 0 and maximal for C = 1.

To assess the possible violation of Bell inequalities we resort instead to the matrix C in Eq. (2.5)
and build, with its transpose CT , the symmetric, positive, 3 ↑ 3 matrix M = CCT ; its eigenvalues
m1, m2, m3 can be ordered in increasing order: m1 ↓ m2 ↓ m3. Then, the two-spin state ω in (2.1)
violates the Bell inequality [7], in its original as well as in the equivalent Clauser-Horne-Shimony-Holt
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r21 → r22 → r23 → r24

We use the Horodechki condition                ,  where 
the parameters is expressed as 
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m12 > 1
(CHSH) [8] form (for details see [5]) if and only if the sum of the two greatest eigenvalues of M is
strictly larger than 1, that is (Horodecki’s condition [9])

m12 → m1 +m2 > 1 . (2.8)

We take this condition as our test of the violation of the Bell inequality. It has the advantage of
automatically maximize the amount of violation without having to worry about a specific choice of
basis for the polarization vectors.

Figure 2.3: Numerical value of m12 and its uncertainty obtained for the spin correlations of the ω -lepton pairs as the

size N of the sample is varied. The dashed horizontal line corresponds to the analytic value. The bias is manifest for

samples containing 100 events because m12 must always be less than 2.

The Horodecki’s condition in Eq. (2.8) may show a bias toward positive values when the eigenvalues
are evaluated numerically on samples with a restricted statistics. The issue was addressed in [10] by
correcting for it in the analysis of the violation of Bell inequalities in top-quark production at the
LHC, a case in which the number of events is limited and m12 is biased. In this work, as in [11], such
a correction is not necessary because, as shown in Fig 2.3, the bias is negligible for samples containing
at least 104 events.

2.3 Monte Carlo simulation

The Monte Carlo simulation provides all the inputs required for the quantum tomography of the
process, which we perform as follows.

We generate 10 million events, containing each a ω lepton pair decaying into two opposite charged
pions plus the ω neutrinos, by means of MadGraph5 [12] and the TauDecay library [13]. No cuts
other than those in the default run card were applied. The events are generated at the tree level in the
electroweak interaction and, therefore, the cross section and the remaining observables are expected
to assume their tree-level values. The generated number of events provides an adequate benchmark
to probe the capabilities of the FCC-ee to perform quantum information analyses. The expected
uncertainty at the FCC-ee—where about 109 events are to be collected in four years of operation with
an integrated luminosity of 150 ab→1—can be obtained upon a rescaling by a factor 10

↑
50 of the

statistical uncertainties indicated by our benchmark.
To make the simulation closer to the analysis with actual data, we replace the Monte Carlo truth

ω lepton momenta with those obtained from the neutrino momenta reconstruction. We then sort
the events into 50 independent samples (each corresponding to a pseudo-experiments with 2 ↓ 105
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in terms of the eigenvalues 
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Focusing on FCC-ee working at the Z boson resonance:

Figure 3.2: Values of the concurrence C and the Horodecki’s condition m12 as functions of the scattering angle in the

parton level process e+e→ → ω+ω→
for

↑
s = 91.19 GeV. The presence of entanglement is signaled by C > 0 and the

violation of Bell inequalities by m12 > 1.

are achieved for a di!erent value of the scattering angle due to the di!erent interplay among the
couplings. In between di!erent regions, interference e!ects reduce the entanglement.

The result for
→
s = 10 GeV have been already discussed in [11] and applied to superKEKB and

the physics at Belle II. Here we study the region at the Z-boson resonance.
In Fig. 3.2 the CM energy is set at

→
s = 91.19 GeV and the concurrence and the Horodecki’s

condition are shown as functions of the scattering angle ”, formed by the e
+ and ω

+ directions.
As for the polarization of the ω pair, we find B+

i = B→
i = Bi for i = r, n, k. Contrary to most of the

other process that have been utilized in studies of entanglement, we have non vanishing Bi coe#cients
at the leading order even though the initial beam is made of unpolarized electrons and positrons. This
feature is due to the parity violating electroweak interactions and makes the study of the ω leptons at
this energy particularly interesting. The two plots in Fig. 3.3 show the behavior of the coe#cients B±

i
as functions of the scattering angle ” at

→
s = 91.19 GeV, as well as in a broader energy range. The

characteristic pattern in the CM energy dependence is due to the interference between the photon and
Z boson contributions. The angular dependence is brought about by the interplay between the axial
and vector couplings and the scattering angle.

The coe#cients Cij and Bi averaged over the angular distribution of the ω pair are found to be

C =




0.4878 0 0

0 ↑0.4878 0.0011
0 0.0011 1



 B+ = B→ =




0

0.0001
0.2194



 . (3.2)

These values can be directly compared with the results of the Monte Carlo simulations. We find that
the system is entangled and that the weighted angular averaged value of the concurrence is

C = 0.4878 . (3.3)

As shown in Fig 3.2 the entanglement depends on the kinematic region and is maximal at ” = ε/2.
Similarly, the violation of the Bell inequality is given by

m12 = 1.238 , (3.4)
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Averaging the analytical result over the 
angular distribution of events yields
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• Remark: the results hold prior to possible cuts on the scattering angle that 
might increase the signal.
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• Remark II: the above theoretical estimates show that entanglement and the 
violation of Bell inequalities are, in principle, accessible at the FCC-ee via 
the proposed method.

• Remark: the results hold prior to possible cuts on the scattering angle that 
might increase the signal.
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• Remark II: the above theoretical estimates show that entanglement and the 
violation of Bell inequalities are, in principle, accessible at the FCC-ee via 
the proposed method.

• Remark: the results hold prior to possible cuts on the scattering angle that 
might increase the signal.

• Remark III: I am well aware that all of this means nothing as long as I do not 
show the corresponding uncertainties. To gauge these we resort to a 
dedicated Monte Carlo analysis.
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central values due to different detector settings.




7

Accessing the density matrix from “data” 
The Fano coefficients can be experimentally reconstructed in several 
ways, for instance by accessing the distributions

weighted again by the di!erential cross section. For the case of measuring the spin of tt̄ or ω→ω+ systems from the final
particle angular distributions in their parents’ respective rest frames, the spin analysing powers in Eqs. (3.32)–(3.33) are
ε+ = +1.0 and = ε→ = →1.0 for the positive and negative leptons respectively.

Alternatively, quantum tomography can be performed if the following distributions can be reconstructed

1

ϑ

dϑ

d cos ϖ±
i

=
1

2

(
1↑B±

i
cos ϖ±

i

)
, (3.34)

1

ϑ

dϑ

d cos ϖ+
i
d cos ϖ→

j

=
1

4

(
1 + Cij cos ϖ+

i
cos ϖ→

j

)
, (3.35)

in which cos ϖ±
i

are the projections of the spin vector (or, equivalently, of the polarimetric vector) on the {n̂, r̂, k̂} basis
as computed in the rest frame of the qubit of interest. An example of the distributions obtained for the B±

i
and Cij

coe"cients through Monte Carlo simulations of the e+e→ ↓ ω+ω→ process can be found in Figure 3.2 for the case of the
ω leptons. Non-vanishing values of the coe"cients are signaled by asymmetric distributions.

3.3.2. Qutrits

The spin 1 gauge bosons also act as their own polarimeters. For instance, in the decay W+ ↓ ϱ+ςω the lepton ϱ+ is
produced in the positive helicity state while the neutrino ςω in the negative helicity state. The polarization of the W+

is therefore measured to be +1 in the direction of the lepton ϱ+. The opposite holds for the decay W→ ↓ ϱ→ς̄ω and the
polarization of the W→ is therefore measured to be →1 in the direction of the lepton ϱ→. In both the cases, the momenta
of the final leptons (as in Fig. 3.1) provide a measurement of the gauge boson polarizations. The same is true for final
jets from d and s quarks. These momenta are the only information that we need to extract from the numerical simulation
or the actual data.

The challenge of reconstructing the correlation coe"cients hab, fa and ga has of the density matrix of the final leptons
has recently been discussed in [137], which we mostly follow in the remainder of this section.

The cross section we are interested in can be written as [138]

1

ϑ

dϑ
d!+ d!→ =

(
3

4φ

)2

Tr
[
↼V1V2 (”+ ↔”→)

]
, (3.36)

in which the angular volumes d!± = sin ϖ±dϖ± d↽± are written in terms of the spherical coordinates (with independent
polar axes) for the momenta of the final charged leptons in the respective rest frames of the decaying particles. The
dependence on the invariant mass mV V and scattering angle # in Eq. (3.36) is implied. The density matrix ↼V1V2 in
Eq. (3.36) is that for the production of two gauge bosons given in Eq. (2.58).

The density matrices ”± describe the polarization of the decaying gauge bosons. The final leptons are taken to be
massless—for their masses are negligible with respect to that of the gauge boson. They are projectors in the case of the
W -bosons because of their chiral coupling to leptons. These matrices can be computed by rotating to an arbitrary polar
axis the spin ±1 states of the weak gauge bosons taken in the z direction and are given, in the Gell-Mann basis, as
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where the Wigner functions qa± can be written in terms of the respective spherical coordinates, as reported in Eq. (B.5)
of Appendix B.2, for the decay of W -bosons.

We can define another set of functions
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orthogonal to those in Eq. (B.5): (
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In Eq. (3.38), m→1 is the inverse of the matrix
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)∫
qn± qm± d!± , (3.40)

which is assumed to exist. The explicit form of the functions pn± are given in Appendix B.2 Eq. (B.6).

22

weighted again by the di!erential cross section. For the case of measuring the spin of tt̄ or ω→ω+ systems from the final
particle angular distributions in their parents’ respective rest frames, the spin analysing powers in Eqs. (3.32)–(3.33) are
ε+ = +1.0 and = ε→ = →1.0 for the positive and negative leptons respectively.

Alternatively, quantum tomography can be performed if the following distributions can be reconstructed
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in which cos ϖ±
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are the projections of the spin vector (or, equivalently, of the polarimetric vector) on the {n̂, r̂, k̂} basis
as computed in the rest frame of the qubit of interest. An example of the distributions obtained for the B±

i
and Cij

coe"cients through Monte Carlo simulations of the e+e→ ↓ ω+ω→ process can be found in Figure 3.2 for the case of the
ω leptons. Non-vanishing values of the coe"cients are signaled by asymmetric distributions.

3.3.2. Qutrits

The spin 1 gauge bosons also act as their own polarimeters. For instance, in the decay W+ ↓ ϱ+ςω the lepton ϱ+ is
produced in the positive helicity state while the neutrino ςω in the negative helicity state. The polarization of the W+

is therefore measured to be +1 in the direction of the lepton ϱ+. The opposite holds for the decay W→ ↓ ϱ→ς̄ω and the
polarization of the W→ is therefore measured to be →1 in the direction of the lepton ϱ→. In both the cases, the momenta
of the final leptons (as in Fig. 3.1) provide a measurement of the gauge boson polarizations. The same is true for final
jets from d and s quarks. These momenta are the only information that we need to extract from the numerical simulation
or the actual data.

The challenge of reconstructing the correlation coe"cients hab, fa and ga has of the density matrix of the final leptons
has recently been discussed in [137], which we mostly follow in the remainder of this section.

The cross section we are interested in can be written as [138]
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axis the spin ±1 states of the weak gauge bosons taken in the z direction and are given, in the Gell-Mann basis, as
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Fano coefficients

where we defined                         ,  with         n, r or k and with       being the 
polarimetric vector for the chosen decay mode (i.e. the pion direction as seen 
in the rest frame of the decaying tau lepton).
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cos ω±i = εn± · êi
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Accessing the density matrix from “data” 
The Fano coefficients can be experimentally reconstructed in several 
ways, for instance by accessing the distributions

weighted again by the di!erential cross section. For the case of measuring the spin of tt̄ or ω→ω+ systems from the final
particle angular distributions in their parents’ respective rest frames, the spin analysing powers in Eqs. (3.32)–(3.33) are
ε+ = +1.0 and = ε→ = →1.0 for the positive and negative leptons respectively.

Alternatively, quantum tomography can be performed if the following distributions can be reconstructed
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in which cos ϖ±
i

are the projections of the spin vector (or, equivalently, of the polarimetric vector) on the {n̂, r̂, k̂} basis
as computed in the rest frame of the qubit of interest. An example of the distributions obtained for the B±

i
and Cij

coe"cients through Monte Carlo simulations of the e+e→ ↓ ω+ω→ process can be found in Figure 3.2 for the case of the
ω leptons. Non-vanishing values of the coe"cients are signaled by asymmetric distributions.

3.3.2. Qutrits

The spin 1 gauge bosons also act as their own polarimeters. For instance, in the decay W+ ↓ ϱ+ςω the lepton ϱ+ is
produced in the positive helicity state while the neutrino ςω in the negative helicity state. The polarization of the W+

is therefore measured to be +1 in the direction of the lepton ϱ+. The opposite holds for the decay W→ ↓ ϱ→ς̄ω and the
polarization of the W→ is therefore measured to be →1 in the direction of the lepton ϱ→. In both the cases, the momenta
of the final leptons (as in Fig. 3.1) provide a measurement of the gauge boson polarizations. The same is true for final
jets from d and s quarks. These momenta are the only information that we need to extract from the numerical simulation
or the actual data.

The challenge of reconstructing the correlation coe"cients hab, fa and ga has of the density matrix of the final leptons
has recently been discussed in [137], which we mostly follow in the remainder of this section.

The cross section we are interested in can be written as [138]
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d!+ d!→ =

(
3

4φ

)2

Tr
[
↼V1V2 (”+ ↔”→)

]
, (3.36)

in which the angular volumes d!± = sin ϖ±dϖ± d↽± are written in terms of the spherical coordinates (with independent
polar axes) for the momenta of the final charged leptons in the respective rest frames of the decaying particles. The
dependence on the invariant mass mV V and scattering angle # in Eq. (3.36) is implied. The density matrix ↼V1V2 in
Eq. (3.36) is that for the production of two gauge bosons given in Eq. (2.58).

The density matrices ”± describe the polarization of the decaying gauge bosons. The final leptons are taken to be
massless—for their masses are negligible with respect to that of the gauge boson. They are projectors in the case of the
W -bosons because of their chiral coupling to leptons. These matrices can be computed by rotating to an arbitrary polar
axis the spin ±1 states of the weak gauge bosons taken in the z direction and are given, in the Gell-Mann basis, as

”± =
1

3
1 +

1

2

8∑

i=a

qa± T a , (3.37)

where the Wigner functions qa± can be written in terms of the respective spherical coordinates, as reported in Eq. (B.5)
of Appendix B.2, for the decay of W -bosons.

We can define another set of functions
pn± =

∑
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qm± (3.38)

orthogonal to those in Eq. (B.5): (
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In Eq. (3.38), m→1 is the inverse of the matrix

(m±)
nm =

(
3

8φ

)∫
qn± qm± d!± , (3.40)

which is assumed to exist. The explicit form of the functions pn± are given in Appendix B.2 Eq. (B.6).
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particle angular distributions in their parents’ respective rest frames, the spin analysing powers in Eqs. (3.32)–(3.33) are
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in which cos ϖ±
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are the projections of the spin vector (or, equivalently, of the polarimetric vector) on the {n̂, r̂, k̂} basis
as computed in the rest frame of the qubit of interest. An example of the distributions obtained for the B±
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coe"cients through Monte Carlo simulations of the e+e→ ↓ ω+ω→ process can be found in Figure 3.2 for the case of the
ω leptons. Non-vanishing values of the coe"cients are signaled by asymmetric distributions.
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polarization of the W→ is therefore measured to be →1 in the direction of the lepton ϱ→. In both the cases, the momenta
of the final leptons (as in Fig. 3.1) provide a measurement of the gauge boson polarizations. The same is true for final
jets from d and s quarks. These momenta are the only information that we need to extract from the numerical simulation
or the actual data.

The challenge of reconstructing the correlation coe"cients hab, fa and ga has of the density matrix of the final leptons
has recently been discussed in [137], which we mostly follow in the remainder of this section.

The cross section we are interested in can be written as [138]
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, (3.36)

in which the angular volumes d!± = sin ϖ±dϖ± d↽± are written in terms of the spherical coordinates (with independent
polar axes) for the momenta of the final charged leptons in the respective rest frames of the decaying particles. The
dependence on the invariant mass mV V and scattering angle # in Eq. (3.36) is implied. The density matrix ↼V1V2 in
Eq. (3.36) is that for the production of two gauge bosons given in Eq. (2.58).

The density matrices ”± describe the polarization of the decaying gauge bosons. The final leptons are taken to be
massless—for their masses are negligible with respect to that of the gauge boson. They are projectors in the case of the
W -bosons because of their chiral coupling to leptons. These matrices can be computed by rotating to an arbitrary polar
axis the spin ±1 states of the weak gauge bosons taken in the z direction and are given, in the Gell-Mann basis, as
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where the Wigner functions qa± can be written in terms of the respective spherical coordinates, as reported in Eq. (B.5)
of Appendix B.2, for the decay of W -bosons.

We can define another set of functions
pn± =
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orthogonal to those in Eq. (B.5): (
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)∫
pn± qm± d!± = 2 ⇀nm . (3.39)

In Eq. (3.38), m→1 is the inverse of the matrix

(m±)
nm =

(
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)∫
qn± qm± d!± , (3.40)

which is assumed to exist. The explicit form of the functions pn± are given in Appendix B.2 Eq. (B.6).
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Alternatively, the Fano coefficients can be computed as the averages  

Figure 3.2: Example of distributions of the elements of the matrix Cij and the vectors B±
i . The ordinate axes represent the respective

frequencies. The average (see Eqs. (3.34)–(3.35)) and standard deviation of these histograms give the mean value and uncertainty of

the corresponding coe!cient. The non-vanishing values of B±
i or Cij manifest here as asymmetries in the histograms as vanishing

values would be perfectly symmetric. The plots are from a simulation of the process e+e→ → ω+ω→
at

↑
s = 91.19 GeV, by two of

the authors.

The decay depends only on ωB and on the so-called ‘spin-analysing power’ ε : →1 ↑ ε ↑ 1 of the daughter particle in the
decay. Near-maximum values of |ε| ↓ 1.0 are obtained for charged leptons emitted in top-quark decays [136].

The process of measuring ϑ from data in this case is equivalent to determining the polarisation ωB from the angular
distribution. This can be achieved by measurement of the angular distributions, except the (not infrequent) special case
when ε = 0 when the decay is isotropic and hence the process non-invertible. For ε ↔= 0 the polarisation components are
given by projecting out the polarisation components of Eq. (3.31) which can be achieved from the averages of the angular
distributions of the polarimetric vector ωn

B±
i

=
3

ε±

1

ϖ

∫
d!± dϖ

d!± (ωn± · êi), (3.32)

where {êi}, i = 1, 2, 3, is an orthonormal basis—usually {n̂, r̂, k̂}. The correlation parameters Cij can also be determined
by taking the average

Cij =
9

ε+ε→

1

ϖ

∫
d!+d!→ dϖ

d!+d!→ (ωn+ · êi)(ωn→ · êj) (3.33)
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at

↑
s = 91.19 GeV, by two of

the authors.

The decay depends only on ωB and on the so-called ‘spin-analysing power’ ε : →1 ↑ ε ↑ 1 of the daughter particle in the
decay. Near-maximum values of |ε| ↓ 1.0 are obtained for charged leptons emitted in top-quark decays [136].

The process of measuring ϑ from data in this case is equivalent to determining the polarisation ωB from the angular
distribution. This can be achieved by measurement of the angular distributions, except the (not infrequent) special case
when ε = 0 when the decay is isotropic and hence the process non-invertible. For ε ↔= 0 the polarisation components are
given by projecting out the polarisation components of Eq. (3.31) which can be achieved from the averages of the angular
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21

Fano coefficients

where we defined                         ,  with         n, r or k and with       being the 
polarimetric vector for the chosen decay mode (i.e. the pion direction as seen 
in the rest frame of the decaying tau lepton).
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Accessing the density matrix from “data” 
The Fano coefficients can be experimentally reconstructed in several 
ways, for instance by accessing the distributions

weighted again by the di!erential cross section. For the case of measuring the spin of tt̄ or ω→ω+ systems from the final
particle angular distributions in their parents’ respective rest frames, the spin analysing powers in Eqs. (3.32)–(3.33) are
ε+ = +1.0 and = ε→ = →1.0 for the positive and negative leptons respectively.

Alternatively, quantum tomography can be performed if the following distributions can be reconstructed
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in which cos ϖ±
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are the projections of the spin vector (or, equivalently, of the polarimetric vector) on the {n̂, r̂, k̂} basis
as computed in the rest frame of the qubit of interest. An example of the distributions obtained for the B±

i
and Cij

coe"cients through Monte Carlo simulations of the e+e→ ↓ ω+ω→ process can be found in Figure 3.2 for the case of the
ω leptons. Non-vanishing values of the coe"cients are signaled by asymmetric distributions.

3.3.2. Qutrits

The spin 1 gauge bosons also act as their own polarimeters. For instance, in the decay W+ ↓ ϱ+ςω the lepton ϱ+ is
produced in the positive helicity state while the neutrino ςω in the negative helicity state. The polarization of the W+

is therefore measured to be +1 in the direction of the lepton ϱ+. The opposite holds for the decay W→ ↓ ϱ→ς̄ω and the
polarization of the W→ is therefore measured to be →1 in the direction of the lepton ϱ→. In both the cases, the momenta
of the final leptons (as in Fig. 3.1) provide a measurement of the gauge boson polarizations. The same is true for final
jets from d and s quarks. These momenta are the only information that we need to extract from the numerical simulation
or the actual data.

The challenge of reconstructing the correlation coe"cients hab, fa and ga has of the density matrix of the final leptons
has recently been discussed in [137], which we mostly follow in the remainder of this section.

The cross section we are interested in can be written as [138]
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in which the angular volumes d!± = sin ϖ±dϖ± d↽± are written in terms of the spherical coordinates (with independent
polar axes) for the momenta of the final charged leptons in the respective rest frames of the decaying particles. The
dependence on the invariant mass mV V and scattering angle # in Eq. (3.36) is implied. The density matrix ↼V1V2 in
Eq. (3.36) is that for the production of two gauge bosons given in Eq. (2.58).

The density matrices ”± describe the polarization of the decaying gauge bosons. The final leptons are taken to be
massless—for their masses are negligible with respect to that of the gauge boson. They are projectors in the case of the
W -bosons because of their chiral coupling to leptons. These matrices can be computed by rotating to an arbitrary polar
axis the spin ±1 states of the weak gauge bosons taken in the z direction and are given, in the Gell-Mann basis, as
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where the Wigner functions qa± can be written in terms of the respective spherical coordinates, as reported in Eq. (B.5)
of Appendix B.2, for the decay of W -bosons.

We can define another set of functions
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which is assumed to exist. The explicit form of the functions pn± are given in Appendix B.2 Eq. (B.6).
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weighted again by the di!erential cross section. For the case of measuring the spin of tt̄ or ω→ω+ systems from the final
particle angular distributions in their parents’ respective rest frames, the spin analysing powers in Eqs. (3.32)–(3.33) are
ε+ = +1.0 and = ε→ = →1.0 for the positive and negative leptons respectively.

Alternatively, quantum tomography can be performed if the following distributions can be reconstructed

1

ϑ

dϑ

d cos ϖ±
i

=
1

2

(
1↑B±

i
cos ϖ±

i

)
, (3.34)

1

ϑ

dϑ

d cos ϖ+
i
d cos ϖ→

j

=
1

4

(
1 + Cij cos ϖ+

i
cos ϖ→

j

)
, (3.35)

in which cos ϖ±
i

are the projections of the spin vector (or, equivalently, of the polarimetric vector) on the {n̂, r̂, k̂} basis
as computed in the rest frame of the qubit of interest. An example of the distributions obtained for the B±

i
and Cij

coe"cients through Monte Carlo simulations of the e+e→ ↓ ω+ω→ process can be found in Figure 3.2 for the case of the
ω leptons. Non-vanishing values of the coe"cients are signaled by asymmetric distributions.

3.3.2. Qutrits

The spin 1 gauge bosons also act as their own polarimeters. For instance, in the decay W+ ↓ ϱ+ςω the lepton ϱ+ is
produced in the positive helicity state while the neutrino ςω in the negative helicity state. The polarization of the W+

is therefore measured to be +1 in the direction of the lepton ϱ+. The opposite holds for the decay W→ ↓ ϱ→ς̄ω and the
polarization of the W→ is therefore measured to be →1 in the direction of the lepton ϱ→. In both the cases, the momenta
of the final leptons (as in Fig. 3.1) provide a measurement of the gauge boson polarizations. The same is true for final
jets from d and s quarks. These momenta are the only information that we need to extract from the numerical simulation
or the actual data.

The challenge of reconstructing the correlation coe"cients hab, fa and ga has of the density matrix of the final leptons
has recently been discussed in [137], which we mostly follow in the remainder of this section.

The cross section we are interested in can be written as [138]

1

ϑ

dϑ
d!+ d!→ =

(
3

4φ

)2

Tr
[
↼V1V2 (”+ ↔”→)

]
, (3.36)

in which the angular volumes d!± = sin ϖ±dϖ± d↽± are written in terms of the spherical coordinates (with independent
polar axes) for the momenta of the final charged leptons in the respective rest frames of the decaying particles. The
dependence on the invariant mass mV V and scattering angle # in Eq. (3.36) is implied. The density matrix ↼V1V2 in
Eq. (3.36) is that for the production of two gauge bosons given in Eq. (2.58).

The density matrices ”± describe the polarization of the decaying gauge bosons. The final leptons are taken to be
massless—for their masses are negligible with respect to that of the gauge boson. They are projectors in the case of the
W -bosons because of their chiral coupling to leptons. These matrices can be computed by rotating to an arbitrary polar
axis the spin ±1 states of the weak gauge bosons taken in the z direction and are given, in the Gell-Mann basis, as

”± =
1

3
1 +

1

2

8∑

i=a

qa± T a , (3.37)

where the Wigner functions qa± can be written in terms of the respective spherical coordinates, as reported in Eq. (B.5)
of Appendix B.2, for the decay of W -bosons.
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)∫
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Alternatively, the Fano coefficients can be computed as the averages  

Figure 3.2: Example of distributions of the elements of the matrix Cij and the vectors B±
i . The ordinate axes represent the respective

frequencies. The average (see Eqs. (3.34)–(3.35)) and standard deviation of these histograms give the mean value and uncertainty of

the corresponding coe!cient. The non-vanishing values of B±
i or Cij manifest here as asymmetries in the histograms as vanishing

values would be perfectly symmetric. The plots are from a simulation of the process e+e→ → ω+ω→
at

↑
s = 91.19 GeV, by two of

the authors.

The decay depends only on ωB and on the so-called ‘spin-analysing power’ ε : →1 ↑ ε ↑ 1 of the daughter particle in the
decay. Near-maximum values of |ε| ↓ 1.0 are obtained for charged leptons emitted in top-quark decays [136].

The process of measuring ϑ from data in this case is equivalent to determining the polarisation ωB from the angular
distribution. This can be achieved by measurement of the angular distributions, except the (not infrequent) special case
when ε = 0 when the decay is isotropic and hence the process non-invertible. For ε ↔= 0 the polarisation components are
given by projecting out the polarisation components of Eq. (3.31) which can be achieved from the averages of the angular
distributions of the polarimetric vector ωn

B±
i

=
3

ε±

1

ϖ

∫
d!± dϖ

d!± (ωn± · êi), (3.32)

where {êi}, i = 1, 2, 3, is an orthonormal basis—usually {n̂, r̂, k̂}. The correlation parameters Cij can also be determined
by taking the average

Cij =
9

ε+ε→

1

ϖ

∫
d!+d!→ dϖ

d!+d!→ (ωn+ · êi)(ωn→ · êj) (3.33)
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d!± (ωn± · êi), (3.32)
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Fano coefficients

where we defined                         ,  with         n, r or k and with       being the 
polarimetric vector for the chosen decay mode (i.e. the pion direction as seen 
in the rest frame of the decaying tau lepton).

<latexit sha1_base64="yH71KIwwvhTJgkEg7A0Fv+Ntvww="></latexit>

cos ω±i = εn± · êi
<latexit sha1_base64="QK2QD/kWxpLi/pB9Z6gmYTN1xAc=">AAACXHicZVBNSwMxEE3X+lW/qoIXL8FS8FR2RaoeBNGLF6GibYV2Kdl0akM3yZpJhbLs7/CqP8uLv8Vs7cG2A4HHm/cmbyZKYoHW978L3kpxdW19Y7O0tb2zu1feP2ihHhsOTa5jbV4ihhALBU0rbAwviQEmoxja0egu77ffwaDQ6tlOEggle1ViIDizjgppd8hsCllP0GvaK1f8mj8tugyCGaiQWTV6+4Wrbl/zsQRlecwQO4Gf2DBlxgoeQ1bqjhESxkfsFToOKiYBw3SaOqNVx/TpQBv3lKVTtlSq0qeJjHSM0w4ohHwX/D8qjSKZ5coHZodO8i6MVnkGpEz1qU7AMKvNvIdJlE6eLZL537jEosuwRNqhnOeS4QQFx4U97eAyTIVKxhYUz+icI49gcOAs7tjB4mmXQeusFtRr9cfzys3t7Owb5JickFMSkAtyQ+5JgzQJJ2/kg3ySr8KPV/S2vJ0/qVeYeQ7JXHlHv/t3ttE=</latexit>

êi =
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ωn±

spin analyzing power: 
k±=±1

For every simulated event, we boost to the CoM frame (ISR), boost to the 
τ+ rest frame and record          , boost to the τ- rest frame and record      
         . The result is a series of histograms which give us the Fano 
coefficients. 
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Y axes: relative frequencies; x axes: values of the products

Figure 2.2: Relative frequencies of the values of the products cos ω+i cos ω→j , i, j = n, r, k, obtained with the Monte Carlo

simulation of the ε -lepton pairs decaying into a charged pion plus a neutrino, the momentum of which is reconstructed.

The histograms are normalized to the total number of events.

where ω
→ denotes the matrix with complex conjugated entries. Although non-Hermitian, the matrix

R has non-negative eigenvalues; denoting with ri, i = 1, 2, 3, 4, their square roots and assuming r1 to
be the largest, the concurrence C can be expressed as [6]

C = max
(
0, r1 → r2 → r3 → r4

)
. (2.7)

The concurrence is a quantitative estimate of the amount of entanglement in the two-qubit system.
Entanglement is present if C > 0 and maximal for C = 1.

To assess the possible violation of Bell inequalities we resort instead to the matrix C in Eq. (2.5)
and build, with its transpose CT , the symmetric, positive, 3 ↑ 3 matrix M = CCT ; its eigenvalues
m1, m2, m3 can be ordered in increasing order: m1 ↓ m2 ↓ m3. Then, the two-spin state ω in (2.1)
violates the Bell inequality [7], in its original as well as in the equivalent Clauser-Horne-Shimony-Holt

6
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Figure 2.1: Relative frequencies of the values obtained for cos ω±i , i = n, r, k, in the Monte Carlo simulation of the

ε -lepton pairs decaying into a charged pion plus a neutrino, the momentum of which is reconstructed. The histograms

are normalized to the total number of events.

5

Y axes: relative frequencies; x axes: 
values of the products.
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Including ISR, momenta reconstruction 
and detector effects we obtain:

For the coe!cients Bi we have:

B+ =




→0.0023± 0.0037
→0.0001± 0.0039
0.2173± 0.0040



 B→ =




→0.0037± 0.0038
0.0007± 0.0035
0.2186± 0.0035



 . (3.6)

The concurrence is found to be
C = 0.4815± 0.0046 , (3.7)

and the Horodecki’s condition for the violation of the Bell inequality is given by

m12 = 1.233± 0.014 . (3.8)

The values in Eqs. (3.7)–(3.8) are in excellent agreement with the analytic results, proving that
the size of the samples used in the analysis yields su!cient precision.

3.2.1 Monte Carlo simulation with detector and ISR e!ects

To have a better sense of the actual experimental uncertainties, we run a second Monte Carlo simula-
tion including the smearing of the charged pion momenta and of the closest approach vector discussed
in Section 2.3, and contaminating the sample with events at lower

↑
s to include the e”ect of ISR.

This procedure gives

C =




0.4819± 0.0079 →0.0073± 0.0082 →0.0016± 0.0089

→0.0066± 0.0082 →0.4784± 0.0084 0.0016± 0.0070
→0.0002± 0.0080 →0.0004± 0.0087 1.000± 0.0074



 (3.9)

B+ =




→0.0028± 0.0042
→0.0001± 0.0049
0.2198± 0.0044



 B→ =




→0.0039± 0.0048
0.0017± 0.0049
0.2207± 0.0044



 . (3.10)

According to the above results for the coe!cients Cij and Bi, we find that the concurrence is given
now by

C = 0.4805± 0.0063 (3.11)

and the Horodecki’s condition by
m12 = 1.239± 0.017 . (3.12)

3.2.2 Background and systematic uncertainties

The dominant background arises from misconstruction of the ω decay channel. This is very small
for the single pion channel, much smaller than for other decay channels as that into two pions. A
potentially large background comes from the presence of electron and positrons in the final state, but
it can be controlled by using the impact parameter. Backgrounds arising from the process e+e→ ↓ qq̄

and from other sources are even smaller. We therefore feel that it is not necessary to estimate their
e”ect for the purpose of the present analysis.

Theoretical systematic errors are either very small (those coming from NLO contributions or the
uncertainty in the value of mZ) or not present (those originating from di”erent parton distribution
functions which are not utilized in the first place) because of the EW nature of the process under
consideration. A realistic determination of the experimental systematic uncertainties is not possible
until the machine and the detectors are comprehensively understood. Yet we can partially estimate the

13

well in agreement with the theoretical 
estimates seen before:

Figure 3.2: Values of the concurrence C and the Horodecki’s condition m12 as functions of the scattering angle in the

parton level process e+e→ → ω+ω→
for

↑
s = 91.19 GeV. The presence of entanglement is signaled by C > 0 and the

violation of Bell inequalities by m12 > 1.

are achieved for a di!erent value of the scattering angle due to the di!erent interplay among the
couplings. In between di!erent regions, interference e!ects reduce the entanglement.

The result for
→
s = 10 GeV have been already discussed in [11] and applied to superKEKB and

the physics at Belle II. Here we study the region at the Z-boson resonance.
In Fig. 3.2 the CM energy is set at

→
s = 91.19 GeV and the concurrence and the Horodecki’s

condition are shown as functions of the scattering angle ”, formed by the e
+ and ω

+ directions.
As for the polarization of the ω pair, we find B+

i = B→
i = Bi for i = r, n, k. Contrary to most of the

other process that have been utilized in studies of entanglement, we have non vanishing Bi coe#cients
at the leading order even though the initial beam is made of unpolarized electrons and positrons. This
feature is due to the parity violating electroweak interactions and makes the study of the ω leptons at
this energy particularly interesting. The two plots in Fig. 3.3 show the behavior of the coe#cients B±

i
as functions of the scattering angle ” at

→
s = 91.19 GeV, as well as in a broader energy range. The

characteristic pattern in the CM energy dependence is due to the interference between the photon and
Z boson contributions. The angular dependence is brought about by the interplay between the axial
and vector couplings and the scattering angle.

The coe#cients Cij and Bi averaged over the angular distribution of the ω pair are found to be

C =




0.4878 0 0

0 ↑0.4878 0.0011
0 0.0011 1



 B+ = B→ =




0

0.0001
0.2194



 . (3.2)

These values can be directly compared with the results of the Monte Carlo simulations. We find that
the system is entangled and that the weighted angular averaged value of the concurrence is

C = 0.4878 . (3.3)

As shown in Fig 3.2 the entanglement depends on the kinematic region and is maximal at ” = ε/2.
Similarly, the violation of the Bell inequality is given by

m12 = 1.238 , (3.4)
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Quantum information with taus @ FCC-ee
As to the prospects for detecting entanglement and the violation of the Bell 
inequality at FCC-ee with tau leptons, we find

in line with the given theoretical predictions:                  ,                    . 
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These values can be directly compared with the results of the Monte Carlo simulations. We find that
the system is entangled and that the weighted angular averaged value of the concurrence is

C = 0.4878 . (3.3)

As shown in Fig 3.2 the entanglement depends on the kinematic region and is maximal at ” = ε/2.
Similarly, the violation of the Bell inequality is given by

m12 = 1.238 , (3.4)
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size of the systematic errors a!ecting the concurrence and the Horodecki condition by accounting for
ISR and the projected detector e!ects. To this end, we first compare the absolute value of the di!erence
between the central values of the concurrence obtained in the Monte Carlo simulation without, see
Eq. (3.7), and with detector e!ects and ISR, see Eq. (3.11)

ωC |syst = |0.4815→ 0.4805| = 0.0010 , (3.13)

similarly, for the Horodecki condition signaling the violation of the Bell inequality (cf. Eqs. (3.8)–
(3.12)) we have

ωm12|syst = |1.233→ 1.239| = 0.006 . (3.14)

These di!erences account for the systematic uncertainty in the beam energy and are subdominant
with respect to the statistical errors in Eq. (3.11) and Eq. (3.12).

An additional contribution to the systematic errors can be obtained by using the two sets of
uncertainties in the smearing procedure introduced in Section 2.3.2. These yield

ωC |syst = |0.4807→ 0.4805| = 0.0002 , (3.15)

and
ωm12|syst = |1.232→ 1.230| = 0.002 . (3.16)

These contributions are, again, subdominant with respect to the statistical errors in Eq. (3.11) and
Eq. (3.12). They become important as we rescale our statistical uncertainties toward the FCC target
luminosity and will eventually come to dominate.

Including now also the systematic errors estimated above we find that

C = 0.4805± 0.0063|stat ± 0.0012|syst , (3.17)

and the Horodecki’s condition gives

m12 = 1.239± 0.017|stat ± 0.008|syst , (3.18)

where the systematic errors where added linearly.
Equations Eqs. (3.17)–(3.18) are the main result of the present work. The overall significance of

the Bell inequality violation (obtained with a benchmark luminosity of 17.6 fb→1) is about 13 standard
deviations once the errors are added in quadrature. The expected significance with 150 ab→1 of data
can be estimated by retaining only the systematic error in Eq. (3.18) and it is about 30 standard
deviations.

These significances can be increased by means of kinematic cuts that select events with scattering
angles close to ” = ε/2, for which the values of C and m12 are larger (see Fig. 3.2).

3.3 Polarizations

The coe#cients B±
i are directly related to the polarizations of the ϑ leptons. Analytically, we find

that these coe#cients are equal, B+
i = B→

i for i = r, n, k.
From the Monte Carlo simulation with detector e!ects and ISR included (corresponding to data

collected with a benchmark integrated luminosity of 17.6 fb→1), we take the polarization to be the
arithmetic average and obtain

↑P ↓ω =
1

2
(B+

k +B→
k ) = 0.2203±0.0044|stat ± 0.0008|syst , (3.19)
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Quantum information with taus @ FCC-ee
As to the prospects for detecting entanglement and the violation of the Bell 
inequality at FCC-ee with tau leptons, we find

in line with the given theoretical predictions:                  ,                    . 

Figure 3.2: Values of the concurrence C and the Horodecki’s condition m12 as functions of the scattering angle in the

parton level process e+e→ → ω+ω→
for

↑
s = 91.19 GeV. The presence of entanglement is signaled by C > 0 and the

violation of Bell inequalities by m12 > 1.

are achieved for a di!erent value of the scattering angle due to the di!erent interplay among the
couplings. In between di!erent regions, interference e!ects reduce the entanglement.

The result for
→
s = 10 GeV have been already discussed in [11] and applied to superKEKB and

the physics at Belle II. Here we study the region at the Z-boson resonance.
In Fig. 3.2 the CM energy is set at

→
s = 91.19 GeV and the concurrence and the Horodecki’s

condition are shown as functions of the scattering angle ”, formed by the e
+ and ω

+ directions.
As for the polarization of the ω pair, we find B+

i = B→
i = Bi for i = r, n, k. Contrary to most of the

other process that have been utilized in studies of entanglement, we have non vanishing Bi coe#cients
at the leading order even though the initial beam is made of unpolarized electrons and positrons. This
feature is due to the parity violating electroweak interactions and makes the study of the ω leptons at
this energy particularly interesting. The two plots in Fig. 3.3 show the behavior of the coe#cients B±

i
as functions of the scattering angle ” at

→
s = 91.19 GeV, as well as in a broader energy range. The

characteristic pattern in the CM energy dependence is due to the interference between the photon and
Z boson contributions. The angular dependence is brought about by the interplay between the axial
and vector couplings and the scattering angle.

The coe#cients Cij and Bi averaged over the angular distribution of the ω pair are found to be
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These values can be directly compared with the results of the Monte Carlo simulations. We find that
the system is entangled and that the weighted angular averaged value of the concurrence is

C = 0.4878 . (3.3)

As shown in Fig 3.2 the entanglement depends on the kinematic region and is maximal at ” = ε/2.
Similarly, the violation of the Bell inequality is given by

m12 = 1.238 , (3.4)
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These values can be directly compared with the results of the Monte Carlo simulations. We find that
the system is entangled and that the weighted angular averaged value of the concurrence is

C = 0.4878 . (3.3)

As shown in Fig 3.2 the entanglement depends on the kinematic region and is maximal at ” = ε/2.
Similarly, the violation of the Bell inequality is given by

m12 = 1.238 , (3.4)

11• the above results use our benchmark luminosity of 17.6 fb-1, hence the 
quoted statistical uncertainties are bound to shrink by a factor of about 70 if 
the full 150 ab-1 luminosity is utilized. 

Remarks:

size of the systematic errors a!ecting the concurrence and the Horodecki condition by accounting for
ISR and the projected detector e!ects. To this end, we first compare the absolute value of the di!erence
between the central values of the concurrence obtained in the Monte Carlo simulation without, see
Eq. (3.7), and with detector e!ects and ISR, see Eq. (3.11)

ωC |syst = |0.4815→ 0.4805| = 0.0010 , (3.13)

similarly, for the Horodecki condition signaling the violation of the Bell inequality (cf. Eqs. (3.8)–
(3.12)) we have

ωm12|syst = |1.233→ 1.239| = 0.006 . (3.14)

These di!erences account for the systematic uncertainty in the beam energy and are subdominant
with respect to the statistical errors in Eq. (3.11) and Eq. (3.12).

An additional contribution to the systematic errors can be obtained by using the two sets of
uncertainties in the smearing procedure introduced in Section 2.3.2. These yield

ωC |syst = |0.4807→ 0.4805| = 0.0002 , (3.15)

and
ωm12|syst = |1.232→ 1.230| = 0.002 . (3.16)

These contributions are, again, subdominant with respect to the statistical errors in Eq. (3.11) and
Eq. (3.12). They become important as we rescale our statistical uncertainties toward the FCC target
luminosity and will eventually come to dominate.

Including now also the systematic errors estimated above we find that

C = 0.4805± 0.0063|stat ± 0.0012|syst , (3.17)

and the Horodecki’s condition gives

m12 = 1.239± 0.017|stat ± 0.008|syst , (3.18)

where the systematic errors where added linearly.
Equations Eqs. (3.17)–(3.18) are the main result of the present work. The overall significance of

the Bell inequality violation (obtained with a benchmark luminosity of 17.6 fb→1) is about 13 standard
deviations once the errors are added in quadrature. The expected significance with 150 ab→1 of data
can be estimated by retaining only the systematic error in Eq. (3.18) and it is about 30 standard
deviations.

These significances can be increased by means of kinematic cuts that select events with scattering
angles close to ” = ε/2, for which the values of C and m12 are larger (see Fig. 3.2).

3.3 Polarizations

The coe#cients B±
i are directly related to the polarizations of the ϑ leptons. Analytically, we find

that these coe#cients are equal, B+
i = B→

i for i = r, n, k.
From the Monte Carlo simulation with detector e!ects and ISR included (corresponding to data

collected with a benchmark integrated luminosity of 17.6 fb→1), we take the polarization to be the
arithmetic average and obtain

↑P ↓ω =
1

2
(B+

k +B→
k ) = 0.2203±0.0044|stat ± 0.0008|syst , (3.19)
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are achieved for a di!erent value of the scattering angle due to the di!erent interplay among the
couplings. In between di!erent regions, interference e!ects reduce the entanglement.

The result for
→
s = 10 GeV have been already discussed in [11] and applied to superKEKB and

the physics at Belle II. Here we study the region at the Z-boson resonance.
In Fig. 3.2 the CM energy is set at
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s = 91.19 GeV and the concurrence and the Horodecki’s

condition are shown as functions of the scattering angle ”, formed by the e
+ and ω

+ directions.
As for the polarization of the ω pair, we find B+

i = B→
i = Bi for i = r, n, k. Contrary to most of the

other process that have been utilized in studies of entanglement, we have non vanishing Bi coe#cients
at the leading order even though the initial beam is made of unpolarized electrons and positrons. This
feature is due to the parity violating electroweak interactions and makes the study of the ω leptons at
this energy particularly interesting. The two plots in Fig. 3.3 show the behavior of the coe#cients B±

i
as functions of the scattering angle ” at

→
s = 91.19 GeV, as well as in a broader energy range. The

characteristic pattern in the CM energy dependence is due to the interference between the photon and
Z boson contributions. The angular dependence is brought about by the interplay between the axial
and vector couplings and the scattering angle.

The coe#cients Cij and Bi averaged over the angular distribution of the ω pair are found to be
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These values can be directly compared with the results of the Monte Carlo simulations. We find that
the system is entangled and that the weighted angular averaged value of the concurrence is

C = 0.4878 . (3.3)

As shown in Fig 3.2 the entanglement depends on the kinematic region and is maximal at ” = ε/2.
Similarly, the violation of the Bell inequality is given by

m12 = 1.238 , (3.4)
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C = 0.4878 . (3.3)

As shown in Fig 3.2 the entanglement depends on the kinematic region and is maximal at ” = ε/2.
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m12 = 1.238 , (3.4)

11• the above results use our benchmark luminosity of 17.6 fb-1, hence the 
quoted statistical uncertainties are bound to shrink by a factor of about 70 if 
the full 150 ab-1 luminosity is utilized. 

Remarks:

• the quoted systematic uncertainties are computed by evaluating the shift in 
the values of the observables obtained with and without ISR+detector 
effects. To this we add a further shift obtained for a different tuning of the 
detector parameters.   

size of the systematic errors a!ecting the concurrence and the Horodecki condition by accounting for
ISR and the projected detector e!ects. To this end, we first compare the absolute value of the di!erence
between the central values of the concurrence obtained in the Monte Carlo simulation without, see
Eq. (3.7), and with detector e!ects and ISR, see Eq. (3.11)

ωC |syst = |0.4815→ 0.4805| = 0.0010 , (3.13)

similarly, for the Horodecki condition signaling the violation of the Bell inequality (cf. Eqs. (3.8)–
(3.12)) we have

ωm12|syst = |1.233→ 1.239| = 0.006 . (3.14)

These di!erences account for the systematic uncertainty in the beam energy and are subdominant
with respect to the statistical errors in Eq. (3.11) and Eq. (3.12).

An additional contribution to the systematic errors can be obtained by using the two sets of
uncertainties in the smearing procedure introduced in Section 2.3.2. These yield

ωC |syst = |0.4807→ 0.4805| = 0.0002 , (3.15)

and
ωm12|syst = |1.232→ 1.230| = 0.002 . (3.16)

These contributions are, again, subdominant with respect to the statistical errors in Eq. (3.11) and
Eq. (3.12). They become important as we rescale our statistical uncertainties toward the FCC target
luminosity and will eventually come to dominate.

Including now also the systematic errors estimated above we find that

C = 0.4805± 0.0063|stat ± 0.0012|syst , (3.17)

and the Horodecki’s condition gives

m12 = 1.239± 0.017|stat ± 0.008|syst , (3.18)

where the systematic errors where added linearly.
Equations Eqs. (3.17)–(3.18) are the main result of the present work. The overall significance of

the Bell inequality violation (obtained with a benchmark luminosity of 17.6 fb→1) is about 13 standard
deviations once the errors are added in quadrature. The expected significance with 150 ab→1 of data
can be estimated by retaining only the systematic error in Eq. (3.18) and it is about 30 standard
deviations.

These significances can be increased by means of kinematic cuts that select events with scattering
angles close to ” = ε/2, for which the values of C and m12 are larger (see Fig. 3.2).

3.3 Polarizations

The coe#cients B±
i are directly related to the polarizations of the ϑ leptons. Analytically, we find

that these coe#cients are equal, B+
i = B→

i for i = r, n, k.
From the Monte Carlo simulation with detector e!ects and ISR included (corresponding to data

collected with a benchmark integrated luminosity of 17.6 fb→1), we take the polarization to be the
arithmetic average and obtain

↑P ↓ω =
1

2
(B+

k +B→
k ) = 0.2203±0.0044|stat ± 0.0008|syst , (3.19)
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3.4 Anomalous couplings

The ω lepton—the heaviest among the leptons, as the top quark among the quarks—could be the
likeliest to show a behavior departing from that described by the Standard Model. The most general
electroweak Lorentz-invariant vertex !µ between the Z-boson and the ω lepton up to dimension five
operators can be written as
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with F
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1 (0) = gV = →1/2 + 2 sin2 εW and F

A
1 (0) = →gA = 1/2. F2(0) is the magnetic and F3(0) the

electric dipole moment. We parametrize the first two form factors in terms of a Taylor expansion as

F
V,A
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V,A
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and give limits on the coe”cients C
V,A
1 at q

2 = m
2
Z . These form factors act as anomalous couplings

of the ω lepton to the Z boson.

3.4.1 Observables

Our strategy to constrain the form factors in Eq. (3.24) exploits the polarization density matrix, which
can be experimentally reconstructed through quantum tomography and gives a bird’s-eye view of the
possible observables available for a given process.

The method has been previously used to constrain physics beyond the SM a#ecting the top-
quark [21, 22] and ω pair [22] production at the LHC and at superKEKB [23], or yielding Higgs
anomalous couplings to ω leptons [14] and gauge bosons [24–26].

For the present case, we use the entries of the polarization density matrix to define three observables
used to constrain the parameters in Eq. (3.24): one observable is the concurrence C defined in Eq. (2.7)
and it measures the entanglement in the spin states of the produced ω pairs, another— specific to the
CP-violating contributes—is related to triple products involving one momentum and the spin vectors
of the ω leptons:

Codd =
∑

i<j

∣∣∣Cij →Cji

∣∣∣ , (3.26)

and the third is the total cross section:

ϖT =
1

64ϱ2 s
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d$

|M|2

4

√
1→ 4m2

ε

s
, (3.27)

in which we neglect the electron mass and take
↑
s = 91.19 GeV.

3.4.2 Limits

For a sample of 200.000 events, the expected value and uncertainty on the cross section is (22.83±0.05)
pb. For the same sample, from Section 3.2.1, we find an uncertainty on Cij , and therefore on Codd, of
at most 0.009, and on the concurrence C of 0.006. We use these uncertainties in the determination of
the limits on the form factors. For the number of events actually expected at the FCC-ee, we rescale
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{
Then, we constrain       , as well as                , via a χ2 test where we vary the 
parameters one at a time.  
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F2,3(m
2
Z)

Oa ω
I
a limits I (L = 17.6 fb→1) ω

II
a limits II (L = 150 ab→1)

C 0.006 →0.002 ↑ F2(m2
Z) ↑ 0.003 0.001 →0.001 ↑ F2(m2

Z) ↑ 0.001

Codd 0.009 →0.001 ↑ F3(m2
Z) ↑ 0.001 0.006 →0.0004 ↑ F3(m2

Z) ↑ 0.0005

ωT 0.05 pb →0.009 ↑ C
V
1 ↑ 0.010 0.02 pb →0.004 ↑ C

V
1 ↑ 0.004

ωT 0.05 pb →0.001 ↑ C
A
1 ↑ 0.001 0.02 pb →0.0004 ↑ C

A
1 ↑ 0.0004

Table 3.1: Bounds obtained at the 95% confidence level for the form factors, as shown in Figures 3.4 and 3.5, neglecting

correlations. The values I refer to a sample of 200 000 events, corresponding to a luminosity L of 17.6 fb
→1

; the values

II are for the sample of 10
9
events expected at the FCC after 4 years of operation with an integrated luminosity of 150

ab
→1

. The uncertainty in the latter case is given by the estimated systematic error (we set that for the cross section at

1 per mille.)

cross section provides a slightly stronger bound because it has a smaller relative uncertainty. This
does not mean that the cross section is a more sensitive observable than the concurrence. Fig. 3.6
shows that the limits from the concurrence are stronger than those from the cross section when a
common relative uncertainty is considered.

Figure 3.6: The ω2
tests for the form factor FV

2 (m2
Z) using the cross section (εT ) and the concurrence (C ) show that

the latter provides more stringent limits when equal relative uncertainties are considered.

The limit on F3(m2
Z) in Table 3.1 corresponds to a limit on the CP violating weak dipole moment

of 5.6↓10→18 e cm for the ε lepton. The corresponding limit from LEP is equal to 1.4↓10→17 [27,28].
These limits are comparable since they are obtained with a similar number of events and utilize similar
observables built out of a CP-odd triple product. Rescaling our limits to the FCC-ee luminosity, we
find |F3(m2

Z)| ↑ 1.1↓ 10→19 e cm, which is one order of magnitude better than the current limit:
3.6↓ 10→18 e cm [20].

Table 3.1 shows the bounds obtained with pseudo-experiments containing each 200 000 events
(second column) and the corresponding projections base on the full dataset of 109 expected at the
FCC-ee (fourth column), in which only the systematic uncertainty is considered since the statistical
errors are negligible upon rescaling by a factor 10

↔
50.
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Can entanglement tell us something about new physics? Lets introduce some 
anomalous couplings for the τ lepton

3.4 Anomalous couplings

The ω lepton—the heaviest among the leptons, as the top quark among the quarks—could be the
likeliest to show a behavior departing from that described by the Standard Model. The most general
electroweak Lorentz-invariant vertex !µ between the Z-boson and the ω lepton up to dimension five
operators can be written as
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1 (0) = →gA = 1/2. F2(0) is the magnetic and F3(0) the

electric dipole moment. We parametrize the first two form factors in terms of a Taylor expansion as
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and give limits on the coe”cients C
V,A
1 at q

2 = m
2
Z . These form factors act as anomalous couplings

of the ω lepton to the Z boson.

3.4.1 Observables

Our strategy to constrain the form factors in Eq. (3.24) exploits the polarization density matrix, which
can be experimentally reconstructed through quantum tomography and gives a bird’s-eye view of the
possible observables available for a given process.

The method has been previously used to constrain physics beyond the SM a#ecting the top-
quark [21, 22] and ω pair [22] production at the LHC and at superKEKB [23], or yielding Higgs
anomalous couplings to ω leptons [14] and gauge bosons [24–26].

For the present case, we use the entries of the polarization density matrix to define three observables
used to constrain the parameters in Eq. (3.24): one observable is the concurrence C defined in Eq. (2.7)
and it measures the entanglement in the spin states of the produced ω pairs, another— specific to the
CP-violating contributes—is related to triple products involving one momentum and the spin vectors
of the ω leptons:

Codd =
∑

i<j

∣∣∣Cij →Cji

∣∣∣ , (3.26)

and the third is the total cross section:

ϖT =
1

64ϱ2 s

∫
d$

|M|2

4

√
1→ 4m2

ε

s
, (3.27)

in which we neglect the electron mass and take
↑
s = 91.19 GeV.

3.4.2 Limits

For a sample of 200.000 events, the expected value and uncertainty on the cross section is (22.83±0.05)
pb. For the same sample, from Section 3.2.1, we find an uncertainty on Cij , and therefore on Codd, of
at most 0.009, and on the concurrence C of 0.006. We use these uncertainties in the determination of
the limits on the form factors. For the number of events actually expected at the FCC-ee, we rescale
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{
Then, we constrain       , as well as                , via a χ2 test where we vary the 
parameters one at a time.  
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F2,3(m
2
Z)

Oa ω
I
a limits I (L = 17.6 fb→1) ω

II
a limits II (L = 150 ab→1)

C 0.006 →0.002 ↑ F2(m2
Z) ↑ 0.003 0.001 →0.001 ↑ F2(m2

Z) ↑ 0.001

Codd 0.009 →0.001 ↑ F3(m2
Z) ↑ 0.001 0.006 →0.0004 ↑ F3(m2

Z) ↑ 0.0005

ωT 0.05 pb →0.009 ↑ C
V
1 ↑ 0.010 0.02 pb →0.004 ↑ C

V
1 ↑ 0.004

ωT 0.05 pb →0.001 ↑ C
A
1 ↑ 0.001 0.02 pb →0.0004 ↑ C

A
1 ↑ 0.0004

Table 3.1: Bounds obtained at the 95% confidence level for the form factors, as shown in Figures 3.4 and 3.5, neglecting

correlations. The values I refer to a sample of 200 000 events, corresponding to a luminosity L of 17.6 fb
→1

; the values

II are for the sample of 10
9
events expected at the FCC after 4 years of operation with an integrated luminosity of 150

ab
→1

. The uncertainty in the latter case is given by the estimated systematic error (we set that for the cross section at

1 per mille.)

cross section provides a slightly stronger bound because it has a smaller relative uncertainty. This
does not mean that the cross section is a more sensitive observable than the concurrence. Fig. 3.6
shows that the limits from the concurrence are stronger than those from the cross section when a
common relative uncertainty is considered.

Figure 3.6: The ω2
tests for the form factor FV

2 (m2
Z) using the cross section (εT ) and the concurrence (C ) show that

the latter provides more stringent limits when equal relative uncertainties are considered.

The limit on F3(m2
Z) in Table 3.1 corresponds to a limit on the CP violating weak dipole moment

of 5.6↓10→18 e cm for the ε lepton. The corresponding limit from LEP is equal to 1.4↓10→17 [27,28].
These limits are comparable since they are obtained with a similar number of events and utilize similar
observables built out of a CP-odd triple product. Rescaling our limits to the FCC-ee luminosity, we
find |F3(m2

Z)| ↑ 1.1↓ 10→19 e cm, which is one order of magnitude better than the current limit:
3.6↓ 10→18 e cm [20].

Table 3.1 shows the bounds obtained with pseudo-experiments containing each 200 000 events
(second column) and the corresponding projections base on the full dataset of 109 expected at the
FCC-ee (fourth column), in which only the systematic uncertainty is considered since the statistical
errors are negligible upon rescaling by a factor 10

↔
50.
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Can entanglement tell us something about new physics? Lets introduce some 
anomalous couplings for the τ lepton

3.4 Anomalous couplings

The ω lepton—the heaviest among the leptons, as the top quark among the quarks—could be the
likeliest to show a behavior departing from that described by the Standard Model. The most general
electroweak Lorentz-invariant vertex !µ between the Z-boson and the ω lepton up to dimension five
operators can be written as
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1 (0) = gV = →1/2 + 2 sin2 εW and F

A
1 (0) = →gA = 1/2. F2(0) is the magnetic and F3(0) the

electric dipole moment. We parametrize the first two form factors in terms of a Taylor expansion as

F
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and give limits on the coe”cients C
V,A
1 at q

2 = m
2
Z . These form factors act as anomalous couplings

of the ω lepton to the Z boson.

3.4.1 Observables

Our strategy to constrain the form factors in Eq. (3.24) exploits the polarization density matrix, which
can be experimentally reconstructed through quantum tomography and gives a bird’s-eye view of the
possible observables available for a given process.

The method has been previously used to constrain physics beyond the SM a#ecting the top-
quark [21, 22] and ω pair [22] production at the LHC and at superKEKB [23], or yielding Higgs
anomalous couplings to ω leptons [14] and gauge bosons [24–26].

For the present case, we use the entries of the polarization density matrix to define three observables
used to constrain the parameters in Eq. (3.24): one observable is the concurrence C defined in Eq. (2.7)
and it measures the entanglement in the spin states of the produced ω pairs, another— specific to the
CP-violating contributes—is related to triple products involving one momentum and the spin vectors
of the ω leptons:

Codd =
∑

i<j

∣∣∣Cij →Cji

∣∣∣ , (3.26)

and the third is the total cross section:

ϖT =
1

64ϱ2 s

∫
d$

|M|2

4

√
1→ 4m2

ε

s
, (3.27)

in which we neglect the electron mass and take
↑
s = 91.19 GeV.

3.4.2 Limits

For a sample of 200.000 events, the expected value and uncertainty on the cross section is (22.83±0.05)
pb. For the same sample, from Section 3.2.1, we find an uncertainty on Cij , and therefore on Codd, of
at most 0.009, and on the concurrence C of 0.006. We use these uncertainties in the determination of
the limits on the form factors. For the number of events actually expected at the FCC-ee, we rescale
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Table 3.1: Bounds obtained at the 95% confidence level for the form factors, as shown in Figures 3.4 and 3.5, neglecting

correlations. The values I refer to a sample of 200 000 events, corresponding to a luminosity L of 17.6 fb
→1

; the values

II are for the sample of 10
9
events expected at the FCC after 4 years of operation with an integrated luminosity of 150

ab
→1

. The uncertainty in the latter case is given by the estimated systematic error (we set that for the cross section at

1 per mille.)

cross section provides a slightly stronger bound because it has a smaller relative uncertainty. This
does not mean that the cross section is a more sensitive observable than the concurrence. Fig. 3.6
shows that the limits from the concurrence are stronger than those from the cross section when a
common relative uncertainty is considered.
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of 5.6↓10→18 e cm for the ε lepton. The corresponding limit from LEP is equal to 1.4↓10→17 [27,28].
These limits are comparable since they are obtained with a similar number of events and utilize similar
observables built out of a CP-odd triple product. Rescaling our limits to the FCC-ee luminosity, we
find |F3(m2

Z)| ↑ 1.1↓ 10→19 e cm, which is one order of magnitude better than the current limit:
3.6↓ 10→18 e cm [20].

Table 3.1 shows the bounds obtained with pseudo-experiments containing each 200 000 events
(second column) and the corresponding projections base on the full dataset of 109 expected at the
FCC-ee (fourth column), in which only the systematic uncertainty is considered since the statistical
errors are negligible upon rescaling by a factor 10
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Is that the best that this 
quantum stuff can do?

Nope! Rather than using 'quantum information observables' like entanglement, 
magic, discord, we can use the density matrix itself. In quantum information 
theory, the distance between two density matrices is often quantified with the 
trace distance:

importance for cryptographic and quantum computing protocols. These phenomena can also be in-
vestigated at collider experiments, in energy ranges and interactions well outside the reach of the
typical quantum information tests [23–25]. Although these observables provide new means to con-
strain physics beyond the SM, it is the density operator that encapsulates most, if not all, of the
available information pertaining to the system under consideration.

In order to fully capitalize on the possibility o!ered by quantum tomography, in this paper we
introduce into high-energy physics two quantities that are routinely used in quantum information to
compare two quantum states: the trace distance and the fidelity. Di!erently from other observables,
trace distance and fidelity utilize the full density matrices of the two target quantum systems and
consequently o!er, once supplemented with the cross section, the means to best constrain parameters
that could source potential discrepancies.

In the following, after introducing these quantities and briefly reviewing their properties, we demon-
strate their use by studying the internal structure of the top quark in QCD by means of recent LHC
data. We then employ them to constrain the anomalous couplings of the ω lepton to gauge bosons, re-
ferring to two benchmark cases tailored to the LEP3 future collider and the ongoing Belle experiment
by means of Monte Carlo simulations. For the latter setup we also sketch the possibilities o!ered by
the spin formalism within quantum tomography. We conclude the paper with a comparison of the
power in constraining new physics of di!erent quantum information observables.

2 Distance and similarity of quantum states

T he trace distance and fidelity are used to quantify the di!erence and the similarity between
two quantum states, in the same way as their classical counterparts quantify the di!erence and

similarity of two probability distributions.
The trace distance between two density matrices ε and ϑ is defined as [26]

DT (ε, ϑ) =
1

2
Tr

√
(ε→ ϑ)†(ε→ ϑ) ↑ 0 , (2.1)

generalizing the Kolmogorov distance used for probabilities distributions. The trace distance is
a metric on the space of density operators and remains invariant under unitary transformations:
DT (ε, ϑ) = DT (U εU

†
, U ϑ U

†), with U a unitary matrix. To see the e!ect of the trace distance
explicitly, consider the simple case in which both ε and ϑ describe, each, a qubit. Then, given

ε =
1

2

[
1 + ϖr · ϖϱ

]
, ϑ =

1

2

[
1 + ϖs · ϖϱ

]
, (2.2)

with ϖϱ being the vector of Pauli matrices, it follows

DT (ε, ϑ) =
↓ϖr → ϖs↓

2
, (2.3)

whereas if [ε,ϱ] = 0, the trace distance recovers the classical expression with probability distributions
given by the eigenvalues of the density matrices.

Contrary to the trace distance, the fidelity

F (ε, ϑ) = Tr
√

↔
ε ϑ

↔
ε , (2.4)

is a similarity measure. Although not manifestly, it holds F (ε, ϑ) = F (ϑ, ε) and the fidelity is bounded
to 0 ↗ F (ε, ϑ) ↗ 1, with the lower bound being saturated if and only if the density matrices have

3
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trace distance and fidelity utilize the full density matrices of the two target quantum systems and
consequently o!er, once supplemented with the cross section, the means to best constrain parameters
that could source potential discrepancies.

In the following, after introducing these quantities and briefly reviewing their properties, we demon-
strate their use by studying the internal structure of the top quark in QCD by means of recent LHC
data. We then employ them to constrain the anomalous couplings of the ω lepton to gauge bosons, re-
ferring to two benchmark cases tailored to the LEP3 future collider and the ongoing Belle experiment
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So, re-doing the analysis using only trace distance and cross section gives:
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size of the systematic errors a!ecting the concurrence and the Horodecki condition by accounting for
ISR and the projected detector e!ects. To this end, we first compare the absolute value of the di!erence
between the central values of the concurrence obtained in the Monte Carlo simulation without, see
Eq. (3.7), and with detector e!ects and ISR, see Eq. (3.11)

ωC |syst = |0.4815→ 0.4805| = 0.0010 , (3.13)

similarly, for the Horodecki condition signaling the violation of the Bell inequality (cf. Eqs. (3.8)–
(3.12)) we have

ωm12|syst = |1.233→ 1.239| = 0.006 . (3.14)

These di!erences account for the systematic uncertainty in the beam energy and are subdominant
with respect to the statistical errors in Eq. (3.11) and Eq. (3.12).

An additional contribution to the systematic errors can be obtained by using the two sets of
uncertainties in the smearing procedure introduced in Section 2.3.2. These yield

ωC |syst = |0.4807→ 0.4805| = 0.0002 , (3.15)

and
ωm12|syst = |1.232→ 1.230| = 0.002 . (3.16)

These contributions are, again, subdominant with respect to the statistical errors in Eq. (3.11) and
Eq. (3.12). They become important as we rescale our statistical uncertainties toward the FCC target
luminosity and will eventually come to dominate.

Including now also the systematic errors estimated above we find that

C = 0.4805± 0.0063|stat ± 0.0012|syst , (3.17)

and the Horodecki’s condition gives

m12 = 1.239± 0.017|stat ± 0.008|syst , (3.18)

where the systematic errors where added linearly.
Equations Eqs. (3.17)–(3.18) are the main result of the present work. The overall significance of

the Bell inequality violation (obtained with a benchmark luminosity of 17.6 fb→1) is about 13 standard
deviations once the errors are added in quadrature. The expected significance with 150 ab→1 of data
can be estimated by retaining only the systematic error in Eq. (3.18) and it is about 30 standard
deviations.

These significances can be increased by means of kinematic cuts that select events with scattering
angles close to ” = ε/2, for which the values of C and m12 are larger (see Fig. 3.2).

3.3 Polarizations

The coe#cients B±
i are directly related to the polarizations of the ϑ leptons. Analytically, we find

that these coe#cients are equal, B+
i = B→

i for i = r, n, k.
From the Monte Carlo simulation with detector e!ects and ISR included (corresponding to data

collected with a benchmark integrated luminosity of 17.6 fb→1), we take the polarization to be the
arithmetic average and obtain

↑P ↓ω =
1

2
(B+

k +B→
k ) = 0.2203±0.0044|stat ± 0.0008|syst , (3.19)
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• Rather than entanglement, magic and other esoteric quantities I’d 
use trace distance, fidelity and other tools designed to compare 
quantum states
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• Rather than entanglement, magic and other esoteric quantities I’d 
use trace distance, fidelity and other tools designed to compare 
quantum states

• Even if “it from bit” were to turn out to be merely an empty (albeit 
catchy) slogan, could you really find anything cooler to do while 
running at the Z resonance?
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The m12 bias

16

(CHSH) [8] form (for details see [5]) if and only if the sum of the two greatest eigenvalues of M is
strictly larger than 1, that is (Horodecki’s condition [9])

m12 → m1 +m2 > 1 . (2.8)

We take this condition as our test of the violation of the Bell inequality. It has the advantage of
automatically maximize the amount of violation without having to worry about a specific choice of
basis for the polarization vectors.
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Figure 2.3: Numerical value of m12 and its uncertainty obtained for the spin correlations of the ω -lepton pairs as the

size N of the sample is varied. The dashed horizontal line corresponds to the analytic value. The bias is manifest for

samples containing 100 events because m12 must always be less than 2.

The Horodecki’s condition in Eq. (2.8) may show a bias toward positive values when the eigenvalues
are evaluated numerically on samples with a restricted statistics. The issue was addressed in [10] by
correcting for it in the analysis of the violation of Bell inequalities in top-quark production at the
LHC, a case in which the number of events is limited and m12 is biased. In this work, as in [11], such
a correction is not necessary because, as shown in Fig 2.3, the bias is negligible for samples containing
at least 104 events.

2.3 Monte Carlo simulation

The Monte Carlo simulation provides all the inputs required for the quantum tomography of the
process, which we perform as follows.

We generate 10 million events, containing each a ω lepton pair decaying into two opposite charged
pions plus the ω neutrinos, by means of MadGraph5 [12] and the TauDecay library [13]. No cuts
other than those in the default run card were applied. The events are generated at the tree level in the
electroweak interaction and, therefore, the cross section and the remaining observables are expected
to assume their tree-level values. The generated number of events provides an adequate benchmark
to probe the capabilities of the FCC-ee to perform quantum information analyses. The expected
uncertainty at the FCC-ee—where about 109 events are to be collected in four years of operation with
an integrated luminosity of 150 ab→1—can be obtained upon a rescaling by a factor 10

↑
50 of the

statistical uncertainties indicated by our benchmark.
To make the simulation closer to the analysis with actual data, we replace the Monte Carlo truth

ω lepton momenta with those obtained from the neutrino momenta reconstruction. We then sort
the events into 50 independent samples (each corresponding to a pseudo-experiments with 2 ↓ 105

7

Values of m12 and related standard error as a function of the size of 
the sample used in the Monte Carlo analysis: 
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No need to worry about the bias as we use samples of size N>105, resulting in 
a value of m12 well compatible with the expected theoretical estimate (the 
dashed green line). 

Values of m12 and related standard error as a function of the size of 
the sample used in the Monte Carlo analysis: 
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response and limitations while the di!erence in the results obtained by means of the two sets is a
measure of the experimental systematic uncertainty. We have chosen the following two sets

ωpT

pT
= 3→ 10→5 ↑ 0.3→ 10→3 pT

GeV
and ωω,ε = 0.1→ 10→3 rad (2.15)

or
ω
↑
pT

pT
= 3→ 10→5 ↑ 0.6→ 10→3 pT

GeV
and ωω,ε = 0.1→ 10→3 rad (2.16)

for the tracks proper and

ωb = 3µm↑ 15µm

sin2/3”

GeV

pT
or ω

↑
b = 5µm↑ 15µm

sin2/3”

GeV

pT
(2.17)

for the impact parameters and for the reconstruction of the vector of closest approach. These sets
of values are taken from the envisaged IDEA tracking detector [1, 16]. The specific choice we made
provides a useful benchmark to guide our analysys. A constant smearing originates in imperfections
in the detector or anomalies in signal collection, whereas the term scaling with the momentum is
a noise that comes from the imperfection of the readouts. In the simulation we retain the leading
contributions in the quoted uncertainties and account for the related detector e!ects by performing
a Gaussian smearing of the Monte Carlo truth pion momenta and closest approach vector taking the
nominal resolutions above as standard deviations.

Notice that the uncertainties are small if typical pion momenta of the order of 10 GeV and ε -
lepton times of flight of the order of 0.1 mm are considered. Furthermore, the decay of the ε pairs
will generally occur inside the beam pipe (of order 1 cm), thereby ensuring the absence of further
interactions with the detector material that could quench the spin correlation under study.

Figure 2.4: Distribution of the ω -lepton pair events in invariant mass after including the initial state radiation of the

electrons. The last four bins, from 89 to 91 GeV, contain 99% of the events. The count in each bin is normalized to the

total number of events.

We also include in our Monte Carlo simulation the e!ect of Initial state radiation (ISR), which
shifts the beam—and the actual center of mass (CM)—energy as shown in Fig. 2.4. The plot is
obtained by using Pythia 8 [17] and following the indicated statistics we pollute our dataset with

9
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To model the effect of ISR we pollute our dataset with events characterized by 
lower CoM energy down to 89 GeV, using the relative weights indicated by the 
plot below obtained with Pythia 8. 
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We use the difference in the results obtained with the two sets to estimate the 
systematic error.
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The 8 components of neutrino momenta are reconstructed via the following 
constraints 

events equivalent to an e!ective integrated luminosity of 17.6 fb→1) and reconstruct the B±
i and Cij

coe”cients for each sample.
To mimic real data even further, we repeat the analysis by modeling the e”ciency and uncertainty

in the charged pion tracks and vertex determination of the detector prior to performing the neutrino
momenta reconstruction. More details are given below.

2.3.1 Neutrino momenta reconstruction

The eight unknown components of the neutrino momenta can be reconstructed by means of eight
equations: four from the sum of the ω -lepton momenta, which is constrained to satisfy

p
µ
ω+ + p

µ
ω→ = p

µ
e+e→ , (2.9)

and four from the mass-shell conditions

(pω+ → pε+)2 = m
2
ϑ = 0 and (pω→ → pε→)2 = m

2
ϑ = 0 (2.10)

p
2
ω+ = m

2
ω and p

2
ω→ = m

2
ω . (2.11)

The system of equations is second order and a two-fold degeneracy arises (see the Appendix in [14]).
As opposed to other processes, like top quark and W -boson decays, the reconstruction of the

neutrino momenta and, therefore, of the ω momenta is almost perfect. The reason is that the ω

lepton lives long enough to give a decay vertex that can be distinguished from the collision point.
Consequently, the vector of closest approach, identified from the continuation of the trajectories of the
pions emitted in the decay, can be measured and used as to resolve the two-fold degeneracy arising
from the momenta reconstruction. Following [15], we then define the directions of the two charged
pions as

n→ =
p→
|p→|

and n+ =
p+

|p+|
, (2.12)

in which p± are their momenta. The distance between the two decay vertices v± of the ω
± leptons is

d = v+ → v→ . (2.13)

The vector of closest approach connecting the backward continuations of the two charged pion tracks
is then given by

dmin = d+
[(d · n+)(n→ · n+)→ d · n→]n→ + [(d · n→)(n→ · n+)→ d · n+]n+

1→ (n→ · n+)2
. (2.14)

The correct kinematic reconstruction of the ω momenta is then selected by computing dmin for the
two solutions and comparing the results with the measured value.

2.3.2 Detector response and initial state radiation

The performance of what will be the actual detectors of FCC-ee can only be presumed from the
specifications detailed in the current experimental proposal.

The pairs of ω leptons must be identified from the charged pions appearing in the final state. Even
though the e”ciency is high but not 100%, this is not really a problem given the very large number
of events available.

We model the detector resolution with two sets of uncertainties meant to mimic di!erent systematic
errors in the reconstructions. The single smearing of momenta and tracks simulate the detector
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Consequently, the vector of closest approach, identified from the continuation of the trajectories of the
pions emitted in the decay, can be measured and used as to resolve the two-fold degeneracy arising
from the momenta reconstruction. Following [15], we then define the directions of the two charged
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in which p± are their momenta. The distance between the two decay vertices v± of the ω
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d = v+ → v→ . (2.13)
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is then given by
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The correct kinematic reconstruction of the ω momenta is then selected by computing dmin for the
two solutions and comparing the results with the measured value.

2.3.2 Detector response and initial state radiation

The performance of what will be the actual detectors of FCC-ee can only be presumed from the
specifications detailed in the current experimental proposal.

The pairs of ω leptons must be identified from the charged pions appearing in the final state. Even
though the e”ciency is high but not 100%, this is not really a problem given the very large number
of events available.

We model the detector resolution with two sets of uncertainties meant to mimic di!erent systematic
errors in the reconstructions. The single smearing of momenta and tracks simulate the detector
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for some collection of operators {Vi}. Clearly, the map E in (2.6) preserves the hermiticity and positivity of ω, and,
provided

∑
i
V †
i
Vi = 1n, with 1n → Mn(C) the identity matrix, also its normalization; such a map is called a quantum

operation, or simply a quantum channel.
In particular, the unitary dynamics, ω ↑ Ut[ω], generated by a system Hamiltonian operator H → Mn(C), is of the

form (2.6), with just one operator Vi:
ω ↑ Ut[ω] = e→itH ω eitH . (2.7)

The set of transformations {Ut} forms a one-parameter group of linear maps, Ut ↓ Us = Ut+s, for all t, s → R, reflecting
the reversible character of the unitary Schrödinger dynamics; as such, it preserves the spectrum and the purity of the
density matrix:

ω = ω2 =↔
(
Ut[ω]

)2
= Ut[ω] . (2.8)

Another common transformation a!ecting quantum states involves measurement. Assuming the system S be initially
prepared in a pure state |ε↗↘ε|, after measuring a non-degenerate observable O =

∑
k
Ok|k↗↘k|, expressed in its spectral

form with Ok being its eigenvalues and |k↗ the corresponding eigenvectors, then the outcome Ok occurs with probability
wk = |↘k|ε↗|2 and, if the measurement indeed produces Ok, then the post-measurement system state is the projector
Pk = |k↗↘k|. By repeating the measurement operation on copies of the system S equally prepared in the state |ε↗↘ε|, the
collection of the resulting post-measurement states is described by the statistical mixture {wk, |k↗}:

|ε↗↘ε| ↑
∑

k

wkPk =
∑

k

Pk

(
|ε↗↘ε|

)
Pk . (2.9)

This transformation can be extended by linearity to cover any initial density matrix ω for the system S; as a result, after
the given set of measurements the system state is subjected to the transformation:

ω ↑ P[ω] =
∑

k

Pk ωPk . (2.10)

Contrary to the unitary dynamics Ut, the map P generally transforms pure states into mixtures, thus involving decoherence
e!ects resulting in the suppression of any initially present phase-interference. This happens because the quantum operation
P e!ectively describes S as an open system, in this case as a system interacting with the apparatus used to measure
the observable O. Quite in general, dynamics generating noise and dissipation through decoherence can be modelled as
those of systems in interaction with large external environments; their evolution must be of the form (2.6), the only one
guaranteeing physical consistency in any situation.

2.2. Quantum correlations

One of the characteristic properties of quantum mechanics is the possibility of having correlations among constituent
quantum systems, that is, correlations among their observables, that cannot be accounted for by classical physics. Initially
dismissed as a pure curiosity, the presence of such quantum correlations, that is of entanglement [2, 75, 76], has rapidly
become a fundamental resource in the development of disciplines like quantum information and technology, as it allows
the implementation of protocols and the realization of various apparatus outperforming classical ones [8, 77].

Many experiments have shown the presence of quantum correlations in systems involving photons, atoms and more
recently elementary particles. Indeed, as entanglement is most likely to emerge as the result of a direct interaction among
the constituents of a quantum system, the interaction among elementary particles as seen at colliders seems a promising
place to study the e!ects of quantum correlations.

In the following we shall merely deal with bipartite composite quantum systems S = SA +SB consisting of two finite-
dimensional parties SA and SB , usually identified with two distant, well-separated quantum subsystems. An observable
Ô of S can then be expressed in a tensor product form, Ô = ÔA ≃ ÔB , where ÔA, ÔB are observables of SA and SB ,
respectively; notice that Ô is the product of two local operators, ÔA ≃ 1B and 1A ≃ ÔB .

A state (density matrix) ω of S is called separable if and only if it can be written as a linear convex
combination of tensor products of density matrices:

ω =
∑

ij

pij ω
(A)
i

≃ ω(B)
j

, with pij > 0 and
∑

ij

pij = 1 , (2.11)

where ω(A)
i

and ω(B)
j

are density matrices for the subsystems SA and SB . States ω that cannot be written in
the form of (2.11) are called entangled or non-separable, and exhibit quantum correlations.

Notice that, by expressing the density matrices ω(A)
i

and ω(B)
j

in terms of their spectral decomposition, that is in terms
of their respective eigenprojectors, separable states as in (2.11) can always be written as linear convex combinations of
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In particular, the unitary dynamics, ω ↑ Ut[ω], generated by a system Hamiltonian operator H → Mn(C), is of the

form (2.6), with just one operator Vi:
ω ↑ Ut[ω] = e→itH ω eitH . (2.7)

The set of transformations {Ut} forms a one-parameter group of linear maps, Ut ↓ Us = Ut+s, for all t, s → R, reflecting
the reversible character of the unitary Schrödinger dynamics; as such, it preserves the spectrum and the purity of the
density matrix:

ω = ω2 =↔
(
Ut[ω]

)2
= Ut[ω] . (2.8)

Another common transformation a!ecting quantum states involves measurement. Assuming the system S be initially
prepared in a pure state |ε↗↘ε|, after measuring a non-degenerate observable O =

∑
k
Ok|k↗↘k|, expressed in its spectral

form with Ok being its eigenvalues and |k↗ the corresponding eigenvectors, then the outcome Ok occurs with probability
wk = |↘k|ε↗|2 and, if the measurement indeed produces Ok, then the post-measurement system state is the projector
Pk = |k↗↘k|. By repeating the measurement operation on copies of the system S equally prepared in the state |ε↗↘ε|, the
collection of the resulting post-measurement states is described by the statistical mixture {wk, |k↗}:

|ε↗↘ε| ↑
∑

k

wkPk =
∑

k

Pk

(
|ε↗↘ε|

)
Pk . (2.9)

This transformation can be extended by linearity to cover any initial density matrix ω for the system S; as a result, after
the given set of measurements the system state is subjected to the transformation:

ω ↑ P[ω] =
∑

k

Pk ωPk . (2.10)

Contrary to the unitary dynamics Ut, the map P generally transforms pure states into mixtures, thus involving decoherence
e!ects resulting in the suppression of any initially present phase-interference. This happens because the quantum operation
P e!ectively describes S as an open system, in this case as a system interacting with the apparatus used to measure
the observable O. Quite in general, dynamics generating noise and dissipation through decoherence can be modelled as
those of systems in interaction with large external environments; their evolution must be of the form (2.6), the only one
guaranteeing physical consistency in any situation.

2.2. Quantum correlations

One of the characteristic properties of quantum mechanics is the possibility of having correlations among constituent
quantum systems, that is, correlations among their observables, that cannot be accounted for by classical physics. Initially
dismissed as a pure curiosity, the presence of such quantum correlations, that is of entanglement [2, 75, 76], has rapidly
become a fundamental resource in the development of disciplines like quantum information and technology, as it allows
the implementation of protocols and the realization of various apparatus outperforming classical ones [8, 77].

Many experiments have shown the presence of quantum correlations in systems involving photons, atoms and more
recently elementary particles. Indeed, as entanglement is most likely to emerge as the result of a direct interaction among
the constituents of a quantum system, the interaction among elementary particles as seen at colliders seems a promising
place to study the e!ects of quantum correlations.

In the following we shall merely deal with bipartite composite quantum systems S = SA +SB consisting of two finite-
dimensional parties SA and SB , usually identified with two distant, well-separated quantum subsystems. An observable
Ô of S can then be expressed in a tensor product form, Ô = ÔA ≃ ÔB , where ÔA, ÔB are observables of SA and SB ,
respectively; notice that Ô is the product of two local operators, ÔA ≃ 1B and 1A ≃ ÔB .

A state (density matrix) ω of S is called separable if and only if it can be written as a linear convex
combination of tensor products of density matrices:

ω =
∑

ij

pij ω
(A)
i

≃ ω(B)
j

, with pij > 0 and
∑

ij

pij = 1 , (2.11)

where ω(A)
i

and ω(B)
j

are density matrices for the subsystems SA and SB . States ω that cannot be written in
the form of (2.11) are called entangled or non-separable, and exhibit quantum correlations.

Notice that, by expressing the density matrices ω(A)
i

and ω(B)
j

in terms of their spectral decomposition, that is in terms
of their respective eigenprojectors, separable states as in (2.11) can always be written as linear convex combinations of

8

For a mixed state, described by a density matrix ρ, this generalizes to 

• iv postulate: ℋA∪B = ℋA ⊗ ℋB ⟹
<latexit sha1_base64="5XpYB1PXEszVcxIduPKu9MSSBFM="></latexit>

|ni→ = |ai→ ↑ |bi→ can describe ( )A ∪ B

Mathematically, it follows from the postulates of quantum mechanics and 
from the superposition principle. Take a bipartite system formed by A and B    

|ai⟩ ∈ ℋA, |bi⟩ ∈ ℋB
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2.3. Bell nonlocality

One of the most striking and unexpected results of modern physics is the manifestation of a fundamental indeterminacy in
natural phenomena. Thanks to the advent of quantum mechanics, the use of a statistical language became the standard,
compelling tool for explaining the behavior of physical phenomena. Yet, the possibility of recovering a fully deterministic
description of natural phenomena is amenable to experimental test, which rests on the presence of classes of correlations
among observables underlying what is now known as Bell nonlocality [98, 99].

The simplest situation in which the dichotomy between locality and nonlocality can be appreciated is that of a bipartite
physical system, one part controlled by an agent A (Alice), while that other by the agent B (Bob), well separated and
distinct.3 Both agents perform measurements on their respective subsystem parts and by comparing the corresponding
results draw conclusions on the presence of possible correlations. It is the structure of these correlations that allows
distinguishing local from nonlocal; indeed, J. S. Bell in 1964 [100] was able to introduce a logical formulation, the Bell
inequalities, allowing a disprovable test for correlations being local or nonlocal [101–104]. A violation of one of these
inequalities, as testified in many experiments, not only reveals something about the internal structure of quantum physics,
but strikingly, tells us that correlations in spatially separated systems can exhibit a fundamental nonlocal character.

Bell locality essentially means that the measurement outputs at one party, say A, do not depend on the outcomes
at the remaining one, at B; in other terms, all correlations between Alice and Bob are consequence of shared resources,
which, for a quantum system, can even include its wavefunction. This form of locality can be formalized in full generality.
Let us denote with the (for simplicity, continuous) variable ω the set of unspecified common resources, shared among
Alice and Bob. Further, assume that Alice can choose to measure MA di!erent observables Â1, Â2, . . . ÂMA , each one
giving rise to mA di!erent outcomes ai = 1, 2, . . . ,mA, i = 1, 2, . . . ,MA, and similarly for Bob. Let Pω(A|a) be the
probability for Alice of getting the outcome a having chosen to measure the observable Â and similarly be Pω(B|b) the
probability for Bob of getting b out of the measurement of the observable B̂. What is important is that Pω(A|a) does not
depend on the measurement chosen by Bob and similarly Pω(B|b) does not depend on the Alice choices; in other terms,
the outcome a for Alice and b for Bob are generated locally, by sampling from the probability distribution Pω(A|a) and
Pω(B|b), respectively.

Within these settings, the probability P (A,B|a, b) of the joint result (a, b), having measured Â and B̂, can be expressed
as

P (A,B|a, b) =
∫

dω ε(ω) Pω(A|a) Pω(B|b) , (2.36)

where ε(ω) is the probability distribution of the shared resources. This is the formal statement of Bell locality; the
corresponding statistics of outcomes is called local if it obeys (2.36), nonlocal otherwise. Checking the validity of the
hypothesis (2.36) is usually done by performing a Bell test, that is, by putting under experimental scrutiny the validity
of suitable Bell inequalities that result directly from the hypothesis (2.36).

2.3.1. Qubits

In order to be more specific, let us study the simplest Bell test, involving two parties, Alice and Bob, each one having at
their disposal two possible observables to measure, (Â1, Â2), and (B̂1, B̂2), respectively, each giving rise to two possible
outcome (0, 1); in the notation introduced above: MA = MB = mA = mB = 2 [38, 39, 46]. The test results in checking
the following combination of joint expectation values, involving an observable of Alice and one of Bob [38]:

I2 = →Â1B̂1↑+ →Â1B̂2↑+ →Â2B̂1↑ ↓ →Â2B̂2↑ . (2.37)

In order to obtain the maximum value of I2 achieved using only local resources, it is su"cient [99, 105] to see what is the
outcome when Alice and Bob share a pre-determined set (a1, a2; b1, b2) of possible answers to the measurement queries;
clearly, as these answers can be either 0 or 1, I2 can be at most 2, so that Bell locality implies the Clauser-Horne-
Shimony-Holt (CSHS) inequality:

I2 ↔ 2 . (2.38)

If in an actual experiment one finds I2 > 2, one has to deduce that some sort of nonlocal resource had been shared
between the two parties, and this is precisely what is predicted in a quantum mechanical setting.4

A paradigmatic model in which the inequality (2.38) can be easily checked is a bipartite system made of two spin-1/2
particles, one belonging to Alice, the other to Bob. As it will discussed in detail in the following, this physical situation
is routinely reproduced at colliders, where analysis of the spin correlations among products of high-energy collisions is
performed.

3The two parties are usually assumed not to be able to exchange messages, being in the so-called “non-signaling settings”.
4Quantum mechanics predicts for I2 the maximal value 2

→
2 [106]. Interestingly, hypothetical models “more nonlocal” than quantum

mechanics have been advocated [107], for which the upper value of I2 may exceed 2
→
2.
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• When we compute the same quantity with the rules of quantum mechanics 
we obtain                , hence measuring                        would strongly favor 
quantum mechanics over hidden-variable theories. 
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