Z/W Resonance Schemes @ Lepton Colliders

Zhuoni Qian

Sháo-Fēng Gě

gesf@sjtu.edu.cn

SFG, Ui Min, Zhuoni Qian [2410.15890 [hep-ph]]

Jan 14, 2025 @ FCC Workshop

1) Breit-Wigner vs Energy-Dependent Schemes

- Z Lineshape Scan
- **Forward-Backward Asymmetries**

2) Breit-Wigner vs Theoretical Schemes

- Z Lineshape Scan
- WW Threshold Scan + Fermi Constant

3) Summary

Breit-Wigner Resonance

Resonance peak is at exactly the mass m_{BW}

Shao-Feng Ge [gesf@sjtu.edu.cn]

Decay width is defined as

$$\begin{split} \Gamma \equiv \frac{1}{2m} \int |\mathcal{M}|^2 d\Omega \quad \text{where} \quad & \int |\mathcal{M}|^2 d\Omega \propto p^2 \\ m_{\text{parent}} \gg m_{\text{daughters}} \end{split} \\ \end{split} \\ \text{On-shell:} \quad p^2 = m^2 \quad \square \quad \Gamma \propto m \end{split}$$

Decay width scales with virtuality p²**!**

$$\Gamma(p^2) \equiv \frac{p^2}{m_{\rm ED}^2} \Gamma_{\rm ED} \qquad \qquad \mathcal{D}_{\rm ED} \sim \frac{1}{p^2 - m_{\rm ED}^2 + i\frac{p^2\Gamma_{\rm ED}}{m_{\rm ED}}}$$

Berends, Burgers, Hollik & van Neerven [PLB88] Bardin, Leike, Riemann & Sachwitz [PLB88] Bardin, Bilenky, Mitselmakher, Riemann & Sachwitz [ZPC89]

Breit-Wigner vs Energy-Dependent 个战道研究听

$$\mathcal{D}_{\rm ED} \sim \frac{1}{p^2 - m_{\rm ED}^2 + i\frac{p^2\Gamma_{\rm ED}}{m_{\rm ED}}} \qquad m_{\rm BW} = \sqrt{\mathcal{Z}}m_{\rm ED}$$

$$\Gamma_{\rm BW} = \sqrt{\mathcal{Z}}\Gamma_{\rm ED}$$

$$\mathcal{Z} \equiv \frac{1}{1 + \frac{\Gamma_{\rm ED}^2}{m_{\rm ED}^2}} \qquad g_{\rm BW} = \mathcal{Z}^{1/4}g_{\rm ED}$$

$$\mathcal{D}_{\rm ED}|^2 \sim \frac{\mathcal{Z}}{(p^2 - \mathcal{Z}m_{\rm ED}^2)^2 + \mathcal{Z}^2m_{\rm ED}^2\Gamma_{\rm ED}^2}$$

$$\mathcal{D}_{\rm BW}| \sim \frac{1}{(p^2 - m_{\rm BW}^2)^2 + m_{\rm BW}^2\Gamma_{\rm BW}^2} \qquad \text{Equivalent!}$$

How to distinguish them?

Tsung-Dao Lee Institute

$$|\mathcal{M}_Z|^2 \sim |\mathcal{D}_{\rm ED}|^2 \sim \frac{\mathcal{Z}}{(p^2 - \mathcal{Z}m_{\rm ED}^2)^2 + \mathcal{Z}^2 m_{\rm ED}^2 \Gamma_{\rm ED}^2}$$

Equivalence happens for the Z mediated contribution!

$$(\mathcal{M}_{Z}\mathcal{M}_{\gamma}^{*})_{\mathrm{BW}} \propto \frac{g_{Z,\mathrm{BW}}^{2}e^{2}(s-m_{\mathrm{BW}}^{2})}{\left[(s-m_{\mathrm{BW}}^{2})^{2}+m_{\mathrm{BW}}^{2}\Gamma_{\mathrm{BW}}^{2}\right]s}$$
$$(\mathcal{M}_{Z}\mathcal{M}_{\gamma}^{*})_{\mathrm{ED}} \propto \frac{\mathcal{Z}g_{Z,\mathrm{ED}}^{2}e^{2}(s-m_{\mathrm{ED}}^{2})}{\left[(s-\mathcal{Z}m_{\mathrm{ED}}^{2})^{2}+\mathcal{Z}^{2}m_{\mathrm{ED}}^{2}\Gamma_{\mathrm{ED}}^{2}\right]s}$$

No simultaneous equivalence for the interference term!

Shao-Feng Ge [gesf@sjtu.edu.cn]

また道研究町 Tsung-Dao Lee Institute

$$\sigma_{Z\gamma} = \frac{\alpha Q_e Q_f}{6} \frac{(g_{eL} + g_{eR})(g_{fL} + g_{fR})(s - m_Z^2)}{(s - m_Z^2)^2 + \Gamma_Z^2 m_Z^2}$$

The interference term is unfortunately suppressed!

Shao-Feng Ge [gesf@sjtu.edu.cn]

Forward-Backward Asymmetry

$$\sigma_{Z\gamma} = \frac{\alpha Q_e Q_f}{6} \frac{(g_{eL} + g_{eR})(g_{fL} + g_{fR})(s - m_Z^2)}{(s - m_Z^2)^2 + \Gamma_Z^2 m_Z^2}$$

$$\sigma_F - \sigma_B \propto \frac{3s}{64\pi} (g_{eL}^2 - g_{eR}^2) (g_{fL}^2 - g_{fR}^2)$$

$$\left(+\frac{3Q_eQ_f\alpha(s-M_Z^2)}{8}\left(g_{eL}-g_{eR}\right)\left(g_{fL}-g_{fR}\right)\right)$$

The interference term is enhanced!

Shao-Feng Ge [gesf@sjtu.edu.cn]

Z Lineshape Scan

Shao-Feng Ge [gesf@sjtu.edu.cn]

Z Lineshape Scan + A_{FB}

$$\sigma_{\text{had}} \equiv \sum_{q} \sigma_{F}^{q} + \sigma_{B}^{q} \qquad A_{FB}^{f} \equiv \frac{\sigma_{F}^{f} - \sigma_{B}^{f}}{\sigma_{F}^{f} + \sigma_{B}^{f}}$$

Required precision:

 $\Delta m_Z \lesssim 34 \,\mathrm{MeV} \quad \Delta \Gamma_Z \lesssim 0.9 \,\mathrm{MeV}$

Need both of them simultaneously!

$\Delta\chi^2_{ m min}$	ALEPH	DELPHI	L3	OPAL	Combined
$\sigma_{ m had}$	0.106	0.0083	0.0127	0.0529	0.183
$\sigma_{ m had} + A^{\mu}_{FB}$	8.34	10.1	5.70	14.1	37.9
$\sigma_{ m had} + A^{b,c}_{FB}$	1.19	0.878	0.010^{*}	0.734	2.97
$\sigma_{\rm had} + A_{FB}^{\mu,b,c}$	8.42	9.67	5.58^{*}	13.3	37.0

CEPC: **490** ($\sigma_{had} + A^{\mu}$), **5.1x10⁵** ($\sigma_{had} + A^{\mu} + A^{q}$)

Shao-Feng Ge [gesf@sjtu.edu.cn]

1) Breit-Wigner vs Energy-Dependent Schemes

Z Lineshape Scan

Forward-Backward Asymmetries

2) Breit-Wigner vs Theoretical Schemes

Z Lineshape Scan

WW Threshold Scan + Fermi Constant

3) Summary

Quantum Description

A fundamental particle is described by wave function

This form is Intrinsically for stable particles!

How about unstable particles?

Then the wave function decays with time

Willenbrock & Valencia [PLB91] Willenbrock [2203.11056]

$$\psi(t) \propto e^{-\frac{1}{2}\Gamma t}$$

Shao-Feng Ge [gesf@sjtu.edu.cn]

Physical Pole for Unstable Particle

It is much more convenient to define mass & decay width in the rest frame.

$$m - \frac{\imath}{2}\Gamma$$

A physical pole can be generally parametrized as

$$\mu\equiv m-\frac{i}{2}\Gamma$$

$$\frac{1}{p^2-\mu^2}$$

$$\frac{1}{p^2-m^2+\frac{1}{4}\Gamma^2+im\Gamma}$$
Willenbrock & Valencia [PLB91]
Willenbrock [2203.11056]

Shao-Feng Ge [gesf@sjtu.edu.cn]

Breit-Wigner vs Theoretical

$$\mathcal{D}_{\rm BW} \sim \frac{1}{p^2 - m_{\rm BW}^2 + im_{\rm BW}\Gamma_{\rm BW}}$$

$$\frac{m_{\rm th}}{m_{\rm BW}} = \frac{\Gamma_{\rm BW}}{\Gamma_{\rm th}} \simeq 1 + \frac{\Gamma_Z^2}{8m_Z^2} \equiv R_Z$$
Equivalent!
$$\mathcal{D}_{\rm th} \sim \frac{1}{p^2 - m_{\rm th}^2 + \frac{1}{4}\Gamma_{\rm th}^2 + im_{\rm th}\Gamma_{\rm th}}$$

The equivalence happens at the amplitude level already!

Shao-Feng Ge [gesf@sjtu.edu.cn]

Reciprocal Scaling Behaviors

李波道研究听 **Tsung-Dao Lee Institute**

$$\frac{1}{p^2 - m_{\rm BW}^2 + i m_{\rm BW} \Gamma_{\rm BW}} \quad VS \quad \frac{1}{p^2 - m_{\rm th}^2 + \frac{1}{4} \Gamma_{\rm th}^2 + i m_{\rm th} \Gamma_{\rm th}}$$

Being extracted from data, the imaginary parts should be the same!

Data =
$$m_{\rm BW}\Gamma_{\rm BW} = m_{\rm th}\Gamma_{\rm th}$$
 $\Gamma \propto \frac{1}{m}$
Different!

Theoretical predictions should be

$$\Gamma \propto \frac{1}{m}$$

$$I \quad Different!$$

$$\Gamma_Z \propto m_Z$$

-1

$$\Gamma_{Z} = \frac{m_{Z}}{24\pi} \beta_{f} \left[g_{L}^{2} + g_{R}^{2} - (g_{L}^{2} - 6g_{L}g_{R} + g_{R}^{2}) \frac{m_{f}^{2}}{m_{Z}^{2}} \right]$$
$$\beta_{f} \equiv \sqrt{1 - 4m_{f}^{2}/m_{Z}^{2}}$$

Shao-Feng Ge [gesf@sjtu.edu.cn]

Constrained Fit

$$\chi_Z^2 \equiv \left(\frac{m_{\rm th}/R_Z - m_Z}{\Delta m_Z}\right)^2 + \left(\frac{\Gamma_{\rm th}R_Z - \Gamma_Z}{\Delta \Gamma_Z}\right)^2$$

Required precision:

$\Delta m_Z \lesssim 8.4 \,\mathrm{MeV}$ $\Delta \Gamma_Z \lesssim 0.23 \,\mathrm{MeV}$

Need both of them simultaneously!

	Δm _z (MeV)	ΔΓ _z (MeV)	
LEP	2.1	2.3	
CEPC	0.1	0.025	
FCC-ee	0.1	0.025	
ILC	0.2	0.12	

$$\chi^2_{Z,\min} = 326$$
 (CEPC & FCC-ee) 14.3 (ILC)

Shao-Feng Ge [gesf@sjtu.edu.cn]

1) Breit-Wigner vs Energy-Dependent Schemes

Z Lineshape Scan

Forward-Backward Asymmetries

2) Breit-Wigner vs Theoretical Schemes

Z Lineshape Scan

WW Threshold Scan + Fermi Constant

3) Summary

WW Threshold Scan

$$\chi_W^2 \equiv \left(\frac{m_{W,\text{th}}/R_W - m_W}{\Delta m_W}\right)^2 + \left(\frac{\Gamma_{W,\text{th}}R_W - \Gamma_W}{\Delta \Gamma_W}\right)^2$$
$$\Gamma_W = \frac{m_W}{24\pi}g^2\beta_{12}\left[1 - \frac{m_1^2 + m_2^2}{2m_W^2} - \frac{(m_1^2 - m_2^2)^2}{2m_W^4}\right]$$

Unfortunately, the mass & decay width precisions are not enough!

	Δm _w (MeV)	ΔΓ _w (MeV)	
CEPC	0.5	2.0	
FCC-ee	0.4	1.2	
ILC	2.4	2.0	

Shao-Feng Ge [gesf@sjtu.edu.cn]

Fermi Constant G_F

$$G_{F,BW} \approx \frac{g^2}{4\sqrt{2}m_{W,BW}^2} \left(1 - \frac{\overline{\Gamma}_W^2}{2m_W^2}\right)$$

Momentum transfer in muon decay $p^2 < m_\mu^2$

$$\overline{\Gamma}_W = \frac{p^2}{m_W^2} \frac{2}{5} \Gamma_W(m_W^2) \sim 10^{-7} \Gamma_W(m_W^2)$$

Fermi constant is free of decay width @ tree level

$$G_{F,BW} \approx \frac{g^2}{4\sqrt{2}m_{W,BW}^2} \approx \frac{g^2}{4\sqrt{2}m_{W,th}^2}$$

Fermi constant fixes m_w to the same value!

Shao-Feng Ge [gesf@sjtu.edu.cn]

WW Threshold + Fermi Constant

大波道研究町 Tsung-Dao Lee Institute

$$\chi_W^2 \equiv \left(\frac{m_{W,\text{th}}/R_W - m_W}{\Delta m_W}\right)^2 + \left(\frac{\Gamma_{W,\text{th}}R_W - \Gamma_W}{\Delta \Gamma_W}\right)^2 + \left(\frac{G_{F,\text{th}} - G_F}{\Delta G_F}\right)^2$$

	Δm _w (MeV)	ΔΓ _w (MeV)		$\Delta \chi^2_{min}$
CEPC	0.5	2.0	CEPC	169
FCC-ee	0.4	1.2	FCC-ee	263
ILC	2.4	2.0	ILC	7.3

$$G_F = 1.1663788(6) \times 10^{-5} \,\mathrm{GeV}^{-2}$$

Shao-Feng Ge [gesf@sjtu.edu.cn]

1) Breit-Wigner vs Energy-Dependent Schemes

Z Lineshape Scan

Forward-Backward Asymmetries

2) Breit-Wigner vs Theoretical Schemes

Z Lineshape Scan

WW Threshold Scan + Fermi Constant

3) Summary

Summary

1. Lepton collider can test one important aspect of quantum & field theories.

2. Resonance scheme can affect precision measurements.

Shao-Feng Ge [gesf@sjtu.edu.cn]

《 Physics Letters A 》

Aims & Scope

- Nonlinear science,
- Statistical physics,
- Mathematical and computational physics,
- AMO and physics of complex systems,
- Plasma and fluid physics,
- Optical physics,
- General and cross-disciplinary physics,
- Biological physics and nanoscience,
- Astrophysics, Particle physics and Cosmology

PLA now also accepts submissions on Particle, Astrophysics, and Cosmology! You are welcome to submit.

Shao-Feng Ge [gesf@sjtu.edu.cn]