Single particle extensions at FCC-ee From a global SMEFT fit

In collaboration with L. Mantani, J. Rojo, A.N. Rossia, E. Vryonidou

Jaco ter Hoeve 14/01/25

- Bypasses the need to recompute predictions for different UV models
- Benefits from correlating a wide range of observables

The ultimate goal of the EFT program is to bridge the gap to UV models

This talk

Heavy fermions

- Tree level
- One loop
- RG effects
- Theory errors

"Granada dictionary" [1711.10391]

Scalar	S	\mathcal{S}_1	\mathcal{S}_2	arphi	Ξ	Ξ_1	Θ_1	Θ_3
	$(1,1)_{0}$	$\left(1,1 ight) _{1}$	$\left(1,1 ight) _{2}$	$(1,2)_{rac{1}{2}}$	$\left(1,3 ight) _{0}$	$\left(1,3 ight) _{1}$	$(1,4)_{rac{1}{2}}$	$(1,4)_{rac{3}{2}}$
	ω_1	ω_2	ω_4	Π_1	Π_7	ζ		
	$(3,1)_{-\frac{1}{3}}$	$(3,1)_{rac{2}{3}}$	$(3,1)_{-rac{4}{3}}$	$(3,2)_{rac{1}{6}}$	$(3,2)_{rac{7}{6}}$	$(3,3)_{-rac{1}{3}}$		
	Ω_1	Ω_2	Ω_4	Υ	Φ			
	$(6,1)_{rac{1}{3}}$	$(6,1)_{-rac{2}{3}}$	$(6,1)_{rac{4}{3}}$	$(6,3)_{rac{1}{3}}$	$(8,2)_{rac{1}{2}}$			
Fermion	N	E	Δ_1	Δ_3	Σ	Σ_1		
	$(1,1)_{0}$	$(1,1)_{-1}$	$(1,2)_{-rac{1}{2}}$	$(1,2)_{-rac{3}{2}}$	$(1,3)_0$	$(1,3)_{-1}$		
	U	D	Q_1	Q_5	Q_7	T_1	T_2	
	$(3,1)_{rac{2}{3}}$	$(3,1)_{-rac{1}{3}}$	$(3,2)_{rac{1}{6}}$	$(3,2)_{-rac{5}{6}}$	$(3,2)_{rac{7}{6}}$	$(3,3)_{-rac{1}{3}}$	$(3,3)_{rac{2}{3}}$	
Vector	\mathcal{B}	\mathcal{B}_1	${\mathcal W}$	\mathcal{W}_1	${\cal G}$	\mathcal{G}_1	${\cal H}$	\mathcal{L}_1
	$(1,1)_0$	$\left(1,1 ight) _{1}$	$\left(1,3 ight) _{0}$	$\left(1,3 ight) _{1}$	$(8,1)_{0}$	$(8,1)_1$	$(8,3)_{0}$	$(1,2)_{rac{1}{2}}$
	\mathcal{L}_3	\mathcal{U}_2	\mathcal{U}_5	\mathcal{Q}_1	\mathcal{Q}_5	${\mathcal X}$	\mathcal{Y}_1	\mathcal{Y}_5
	$ (1,2)_{-rac{3}{2}}$	$(3,1)_{rac{2}{3}}$	$(3,1)_{rac{5}{3}}$	$(3,2)_{rac{1}{6}}$	$(3,2)_{-rac{5}{6}}$	$(3,3)_{rac{2}{3}}$	$(ar{6},2)_{rac{1}{6}}$	$(ar{6},2)_{-rac{5}{6}}$

Special focus on

- Impact of separate FCC-ee runs
- The EW quadruplet model
- Impact of NLO EW corrections
- 1-loop RG and matching effects

This talk

Heavy vector bosons ree le vel

- Tree level
- RG effects
- Theory errors

"Granada dictionary" [1711.10391]

Scalar	S	\mathcal{S}_1	\mathcal{S}_2	arphi	Ξ	Ξ_1	Θ_1	Θ_3
	$(1,1)_{0}$	$\left(1,1 ight) _{1}$	$\left(1,1 ight) _{2}$	$(1,2)_{rac{1}{2}}$	$\left(1,3 ight) _{0}$	$\left(1,3 ight) _{1}$	$(1,4)_{rac{1}{2}}$	$(1,4)_{rac{3}{2}}$
	ω_1	ω_2	ω_4	Π_1	Π_7	ζ		
	$(3,1)_{-\frac{1}{3}}$	$(3,1)_{rac{2}{3}}$	$(3,1)_{-rac{4}{3}}$	$(3,2)_{rac{1}{6}}$	$(3,2)_{rac{7}{6}}$	$(3,3)_{-rac{1}{3}}$		
	Ω_1	Ω_2	Ω_4	Υ	Φ			
	$(6,1)_{rac{1}{3}}$	$(6,1)_{-rac{2}{3}}$	$(6,1)_{rac{4}{3}}$	$(6,3)_{rac{1}{3}}$	$(8,2)_{rac{1}{2}}$			
Fermion	N	E	Δ_1	Δ_3	Σ	Σ_1		
	$(1,1)_{0}$	$(1,1)_{-1}$	$(1,2)_{-rac{1}{2}}$	$(1,2)_{-rac{3}{2}}$	$(1,3)_0$	$(1,3)_{-1}$		
	U	D	Q_1	Q_5	Q_7	T_1	T_2	
	$(3,1)_{rac{2}{3}}$	$(3,1)_{-rac{1}{3}}$	$(3,2)_{rac{1}{6}}$	$(3,2)_{-rac{5}{6}}$	$(3,2)_{rac{7}{6}}$	$(3,3)_{-rac{1}{3}}$	$(3,3)_{rac{2}{3}}$	
Vector	\mathcal{B}	\mathcal{B}_1	${\mathcal W}$	\mathcal{W}_1	${\cal G}$	\mathcal{G}_1	${\cal H}$	\mathcal{L}_1
	$(1,1)_0$	$\left(1,1 ight) _{1}$	$\left(1,3 ight) _{0}$	$\left(1,3 ight) _{1}$	$(8,1)_{0}$	$(8,1)_1$	$(8,3)_{0}$	$(1,2)_{rac{1}{2}}$
	\mathcal{L}_3	\mathcal{U}_2	\mathcal{U}_5	\mathcal{Q}_1	\mathcal{Q}_5	${\mathcal X}$	\mathcal{Y}_1	\mathcal{Y}_5
	$ (1,2)_{-rac{3}{2}}$	$(3,1)_{rac{2}{3}}$	$(3,1)_{rac{5}{3}}$	$(3,2)_{rac{1}{6}}$	$(3,2)_{-rac{5}{6}}$	$(3,3)_{rac{2}{3}}$	$(ar{6},2)_{rac{1}{6}}$	$(ar{6},2)_{-rac{5}{6}}$

Special focus on

- Impact of separate FCC-ee runs
- The EW quadruplet model
- Impact of NLO EW corrections
- 1-loop RG and matching effects

"Granada dictionary" [1711.10391]

Scalar	S	\mathcal{S}_1	\mathcal{S}_2	arphi	Ξ	Ξ_1	Θ_1	Θ_3
	$(1,1)_{0}$	$\left(1,1 ight) _{1}$	$\left(1,1 ight) _{2}$	$(1,2)_{rac{1}{2}}$	$\left(1,3 ight) _{0}$	$\left(1,3 ight) _{1}$	$(1,4)_{rac{1}{2}}$	$(1,4)_{rac{3}{2}}$
	ω_1	ω_2	ω_4	Π_1	Π_7	ζ		
	$(3,1)_{-\frac{1}{3}}$	$(3,1)_{rac{2}{3}}$	$(3,1)_{-rac{4}{3}}$	$(3,2)_{rac{1}{6}}$	$(3,2)_{rac{7}{6}}$	$(3,3)_{-rac{1}{3}}$		
	Ω_1	Ω_2	Ω_4	Υ	Φ			
	$(6,1)_{rac{1}{3}}$	$(6,1)_{-rac{2}{3}}$	$(6,1)_{rac{4}{3}}$	$(6,3)_{rac{1}{3}}$	$(8,2)_{rac{1}{2}}$			
Fermion	N	E	Δ_1	Δ_3	Σ	Σ_1		
	$(1,1)_{0}$	$(1,1)_{-1}$	$(1,2)_{-rac{1}{2}}$	$(1,2)_{-rac{3}{2}}$	$(1,3)_0$	$(1,3)_{-1}$		
	U	D	Q_1	Q_5	Q_7	T_1	T_2	
	$(3,1)_{rac{2}{3}}$	$(3,1)_{-rac{1}{3}}$	$(3,2)_{rac{1}{6}}$	$(3,2)_{-rac{5}{6}}$	$(3,2)_{rac{7}{6}}$	$(3,3)_{-rac{1}{3}}$	$(3,3)_{rac{2}{3}}$	
Vector	\mathcal{B}	\mathcal{B}_1	${\mathcal W}$	\mathcal{W}_1	${\cal G}$	\mathcal{G}_1	${\cal H}$	\mathcal{L}_1
	$(1,1)_0$	$\left(1,1 ight) _{1}$	$\left(1,3 ight) _{0}$	$\left(1,3 ight) _{1}$	$(8,1)_{0}$	$(8,1)_1$	$(8,3)_{0}$	$(1,2)_{rac{1}{2}}$
	\mathcal{L}_3	\mathcal{U}_2	\mathcal{U}_5	\mathcal{Q}_1	\mathcal{Q}_5	${\mathcal X}$	\mathcal{Y}_1	\mathcal{Y}_5
	$ (1,2)_{-rac{3}{2}}$	$(3,1)_{rac{2}{3}}$	$(3,1)_{rac{5}{3}}$	$(3,2)_{rac{1}{6}}$	$(3,2)_{-rac{5}{6}}$	$(3,3)_{rac{2}{3}}$	$(ar{6},2)_{rac{1}{6}}$	$(ar{6},2)_{-rac{5}{6}}$

Special focus on

- Impact of separate FCC-ee runs
- The EW quadruplet model
- Impact of NLO EW corrections
- 1-loop RG and matching effects

RG at Tera-Z

Almost all particles matched at tree level induce operators that flow into EWPOs at tera-Z!

Jaco ter Hoeve - 8th FCC workshop - 14/01/25

Allwicher, McCullough, Renner [2408.03992]

Methodology

[2101.03180],

Recent updates

SMEFiT3.0

- UV models (tree and 1-loop matching)
- External likelihoods
 - Going beyond the Gaussian approximation
 - Allows easy interface to external tools

- RGE running: interface to Wilson with matrix evolution approximation
- JAX-enhanced: fast matrix calculations and GPU acceleration

Heavy scalars

Jaco ter Hoeve - 8th FCC workshop - 14/01/25

General takeaways

- Tera Z dominates most bounds
- Indirect mass reach as high as 6 times HL-LHC
- RGE effects are crucial for most models
- Reach reduced by a factor ~2 upon inclusion of theory errors

Heavy scalars

Jaco ter Hoeve - 8th FCC workshop - 14/01/25

• **RGE** effects matter 4 quark operators flow into operators sensitive to **EWPOs**

					H	Ieavy	Scala	rs			
	S	$ \mathcal{S}_1 $	ϕ	Ξ	Ξ_1	$ \omega_1$	$ \omega_4$	ζ	Ω_1	Ω_4	Υ
$c_{\varphi\square}$	\checkmark			\checkmark	\checkmark						
$c_{arphi D}$				 ✓ 	\checkmark						
$c_{ auarphi}$				 ✓ 	\checkmark						
c_{barphi}				 ✓ 	\checkmark						
c_{tarphi}			\checkmark	 ✓ 	\checkmark						
$c_{\ell\ell}$		\checkmark									
c_{Qt}^1			 ✓ 								
c_{Qt}^8			✓								
c_{QQ}^1						\checkmark		\checkmark	\checkmark		\checkmark
c_{QQ}^8						\checkmark		\checkmark	\checkmark		\checkmark
c_{tt}^1							\checkmark			\checkmark	

Heavy scalars

Jaco ter Hoeve - 8th FCC workshop - 14/01/25

RGE effects subdominant

 Some models induce operators sensitive to EWPOs at tree-level and reduce impact of RG effects

					F	Ieavy	eavy Scalars $ \begin{array}{c cccc} & \omega_1 & \omega_4 & \zeta & \Omega \\ \hline & & \omega_4 & \zeta & \Omega \\ \hline & & & & & & & \\ & & & & & & & & \\ & & & & $				
	S	$ S_1 $	ϕ	Ξ	Ξ_1	ω_1	ω_4	ζ	Ω_1	Ω_4	Υ
$c_{arphi\square}$	~			\checkmark	\checkmark						
$c_{arphi D}$				\checkmark	\checkmark						
$c_{ auarphi}$				\checkmark	\checkmark						
c_{barphi}				\checkmark	\checkmark						
c_{tarphi}			\checkmark	\checkmark	\checkmark						
$c_{\ell\ell}$		\checkmark									
c_{Qt}^1			✓								
c_{Qt}^8			 ✓ 								
c_{QQ}^1						\checkmark		\checkmark	\checkmark		✓
c^8_{QQ}						\checkmark		\checkmark	\checkmark		✓
c_{tt}^1							 ✓ 			 ✓ 	

Vector bosons & fermions

Indirect searches can reach much higher scales than direct searches as high as $\mathcal{O}(100)$ TeV

Jaco ter Hoeve - 8th FCC workshop - 14/01/25

The EW quadruplet model

- Interesting phenomenologically as it generates only \mathcal{O}_{o} at tree-level
- Can explain potential large deviations in the Higgs self coupling without affecting other couplings
- Each quadruplet violates custodial symmetry at one-loop, i.e. O_{oD} is induced
- Solution: 2 quadruplets with equals masses remove the contribution to $O_{arphi D}$ at one-loop

 $\mathcal{L}_{UV} \supset -\lambda_{\Theta} \varphi^* \varphi^* \left(\varepsilon \varphi \right) \Theta_{1/2} - \frac{\lambda_{\Theta}}{\sqrt{3}} \varphi^* \varphi^* \Theta_{3/2} + \text{h.c.}$

The EW quadruplet model

Jaco ter Hoeve - 8th FCC workshop - 14/01/25

Tree level matching

- Sensitivity only from HH @ HL-LHC and NLO-EW ZH @ FCC-ee
- Precision makes NLO EW ZH relevant : bound improves by a factor ~2

Asteriadis, Dawson, Giardino, Szafron [2409.11466]

- Ignoring RG effects overestimates the bounds: sensitivity to \mathcal{O}_{φ} decreases when lowering the scale

The EW quadruplet model

Jaco ter Hoeve - 8th FCC workshop - 14/01/25

One-loop level matching

- Custodial violating: sensitivity driven by $c_{\omega D}$
- **Custodial symmetric:**
 - Impact of $c_{\varphi D}$ reduced
 - sensitivity in ZH through $c_{\omega \Box}$ and its running into $c_{\omega D}$

One-loop matching and RGE

Jaco ter Hoeve - 8th FCC workshop - 14/01/25

One-loop matching and RGE

Jaco ter Hoeve - 8th FCC workshop - 14/01/25

Consider 2HDM in decoupling limit

 $\mathcal{L}_{\rm UV} = \mathcal{L}_{\rm SM} + |D_{\mu}\phi|^2 - m_{\phi}^2 \phi^{\dagger}\phi - \left(y_{\phi,ij}^e \phi^{\dagger}\bar{e}_R^i \ell_L^j + y_{\phi,ij}^d \phi^{\dagger}\bar{d}_R^i q_L^j + y_{\phi,ij}^d \phi^{\dagger}\bar{d}_R^j q_L^j \phi^{\dagger}\bar{d}_R^j q_L^j + y_{\phi,ij}^d \phi^{\dagger}\bar{d}_R^j q_L^j \phi^{\dagger}\bar{d}_R^j q_L^j + y_{\phi,ij}^d \phi^{\dagger}\bar{d}_R^j q_L^j \phi^{\dagger}\bar{d}_R^j \phi^{\dagger}\bar{d}_R^j q_L^j \phi^{\dagger}\bar{d}_R^j \phi^{\dagger}\bar{d}_R^j$

- RG effects bring in more sensitivity than 1-loop matching in some cases
- c_{φ} closes flat direction along λ_{ϕ} even at tree level

Summary and conclusion

- The unprecedented precision of FCC-ee puts indirect limits on the masses of new UV models up to $\mathcal{O}(100)\,TeV$
- NLO-EW ZH corrections are key, especially for models generating \mathcal{O}_{φ}
- We need to keep theory errors under control
- RGE effects are not only necessary, but bring in additional sensitivity
- The different energy runs show beautifully the complementarity of the FCC-ee physics program

Summary and conclusion

- The unprecedented precision of FCC-ee puts indirect limits on the masses of new UV models up to $\mathcal{O}(100)$ TeV
- NLO-EW ZH corrections are key, especially for models generating \mathcal{O}_{o}
- We need to keep theory errors under control
- RGE effects are not only necessary, but bring in additional sensitivity
- The different energy runs show beautifully the complementarity of the FCC-ee physics program

Thank you very much for your attention!

					H	Ieavy	Scalar	'S				
	S	$ S_1 $	ϕ	[1]	Ξ_1	ω_1	ω_4	ζ	Ω_1	Ω_4	Υ	Φ
$c_{arphi\square}$	✓			\checkmark	 ✓ 							
$c_{arphi D}$				\checkmark	\checkmark							
$c_{ auarphi}$				\checkmark	\checkmark							
c_{barphi}				\checkmark	 ✓ 							
c_{tarphi}			\checkmark	\checkmark	\checkmark							
$c_{\ell\ell}$		√										
c_{Qt}^{1}			√									V
c_{Qt}^{1}			V			\checkmark		√	1		1	•
c_{QQ}^{8}						• •		• √	• •		• •	
c_{tt}^1							\checkmark		-	\checkmark	-	
	1	1	1	I				I				I
					Не	avy F	ermie	ons				
	N	E	Δ_1 , \angle	Δ_3	Σ, Σ ₁	U	D	Q_1	Q_{5}	$_{5} \mid Q_{7}$	7 7	T_1, T_2
$c^{(3)}_{arphi\ell_3}$	\checkmark	\checkmark			\checkmark							
$c_{arphi\ell_3}$	\checkmark	\checkmark			\checkmark							
$c_{arphi au}$			\checkmark									
$c_{ auarphi}$		\checkmark	\checkmark		\checkmark							
$c^{(3)}_{arphi O}$						✓	\checkmark					\checkmark
$c_{\varphi Q}^{(-)}$						\checkmark						\checkmark
$c_{\varphi t}$								\checkmark		√		
c_{tarphi}						✓		\checkmark		√		\checkmark
c_{barphi}							\checkmark		✓			\checkmark

Jaco ter Hoeve - 8th FCC workshop - 14/01/25

	Heavy Vector Bosons									
	\mathcal{B}	$ \mathcal{B}_1 $	$\mid w$	$\mid \mathcal{W}_1$	${\cal G}$	\mathcal{H}	\mathcal{Q}_5	\mathcal{Y}_5		
$c_{arphi\square}$	\checkmark	\checkmark	\checkmark	\checkmark						
$c_{arphi D}$	\checkmark	\checkmark		\checkmark						
$c_{ auarphi}$		\checkmark	\checkmark	\checkmark						
c_{barphi}		\checkmark	\checkmark	\checkmark						
c_{tarphi}		\checkmark	\checkmark	\checkmark						
$c^{(3)}_{arphi l_{1,2,3}}$			\checkmark							
$c^{(1)}_{arphi l_{1,2,3}}$	\checkmark									
$c_{arphi(e,\mu, au)}$	\checkmark									
$c^{(3)}_{arphi Q}$			\checkmark							
$c^{(-)}_{arphi Q}$	\checkmark		\checkmark							
$c_{arphi t}$	\checkmark									
$c_{\ell\ell}$			\checkmark							
c_{Qt}^1	\checkmark						\checkmark	\checkmark		
c_{Qt}^8					\checkmark		\checkmark	\checkmark		
c_{QQ}^1	\checkmark		\checkmark			\checkmark				
c_{QQ}^8			\checkmark		\checkmark	\checkmark				
c_{tt}^1	\checkmark				\checkmark					
$c_{\ell\ell_{1111}}$	\checkmark		\checkmark							