New Physics Through Flavor Tagging at FCC-ee

Alessandro Valenti

8th FCC Physics Workshop CERN January 14th, 2025

University of Basel

Based on 2411.02485 in collaboration with Admir Greljo, Hector Tiblom

Universität Basel

FCC-ee runs

New Physics Through Flavor Tagging at FCC-ee

Above the Z-pole

FCC-ee runs

 $O(10^{12})$ Z-bosons

- Stefanek et al (2024) • ~ 10^5 more than LEP Ge et al (2024), ... $\rightarrow O(300)$ statistical improvement on EWPO
- Systematics: capped at O(10) O(100)

Probe tree-level new physics up to O(100) TeV (LEP O(10) TeV)

New Physics Through Flavor Tagging at FCC-ee

FCC-ee report (2019)

De Blas et al (2019)

Above the Z-pole

- Blondel, Janot (2022)
- Bernardi et al (2022)
- Allwicher et al (2023, 2024)

FCC-ee runs

FCC-ee report (2019)

Blondel, Janot (2022)

Bernardi et al (2022)

Allwicher et al (2023, 2024)

De Blas et al (2019)

<u>O(10¹²) Z-bosons</u>

- $\sim 10^5$ more than LEP Ge et al (2024) $\rightarrow O(300)$ statistical improvement on EWPO
- Systematics: capped at O(10) O(100)

Probe tree-level new physics up to O(100) TeV (LEP O(10) TeV)

New Physics Through Flavor Tagging at FCC-ee

Above the Z-pole

Reference energies:

WW	Zh	$\overline{t}t$
163 GeV	$240~{ m GeV}$	365 G
10 ab $^{-1}$	5 ab^{-1}	1.5 at

Higher energy & luminosity than LEP-II (130-209 GeV, $\sim 3~{\rm fb}^{-1}$ tot)

What are the new physics opportunities?

Outline

- 1. Observables and flavor tagging above the Z-pole
- 2. SMEFT interpretation
- 3. Conclusion

Outline

- 1. Observables and flavor tagging above the Z-pole
- 2. SMEFT interpretation
- 3. Conclusion

Observables

 $(\sqrt{s'} \gtrsim 0.85\sqrt{s})$ Focus on inclusive, non-radiative fermion pair-production ratios:

$$(e^+e^- \to \bar{b}b)$$

$$\int_{s,c,b} \sigma(e^+e^- \to \bar{q}q)$$

$$+ R_c, R_s, R_t, R_\ell$$

Observables

 $(\sqrt{s'} \gtrsim 0.85\sqrt{s})$ Focus on inclusive, non-radiative fermion pair-production ratios:

$$R_b = \frac{\sigma(e^+e^- \to \bar{b}b)}{\sum_{q=u,d,s,c,b} \sigma(e^+e^- \to \bar{q}q)} + R_c, R_s, R_t, R_\ell$$

- <u>Systematics?</u>

New Physics Through Flavor Tagging at FCC-ee

• Theoretically OK: $\Delta R_b/R_b|_{\text{theory}} \sim 10^{-4}$ PDG EW (2024) • Naïve stat limit: same as theory $(WW: N_{\bar{h}h} \simeq 6 \times 10^7)$

Observables

 $(\sqrt{s'} \gtrsim 0.85\sqrt{s})$ Focus on inclusive, non-radiative fermion pair-production ratios:

- Systematics?

Flavor tagging crucial to assess expected FCC-ee precision

New Physics Through Flavor Tagging at FCC-ee

$$\frac{(e^+e^- \to \bar{b}b)}{\int_{s,c,b} \sigma(e^+e^- \to \bar{q}q)} + R_c, R_s, R_t, R_\ell$$

• Theoretically OK: $\Delta R_b/R_b|_{\text{theory}} \sim 10^{-4}$ PDG EW (2024) • Naïve stat limit: same as theory $(WW: N_{\bar{b}h} \simeq 6 \times 10^7)$

Toy model: R_h

Two flavors only (b, j)

New Physics Through Flavor Tagging at FCC-ee

 $N_{\text{tot}} = \mathcal{L} \cdot \mathcal{A} \cdot \sigma(e^+e^- \rightarrow q\bar{q}) \rightarrow \text{total untagged events}$

$$\begin{cases} N(n_b = 2) \equiv N_2 = N_{\text{tot}} [(\epsilon_b^b)^2 R_b + (\epsilon_j^b)^2 R_j], \\ N(n_b = 1) \equiv N_1 = 2N_{\text{tot}} [\epsilon_b^b (1 - \epsilon_b^b) R_b + \epsilon_j^b (1 - \epsilon_j^b) R_j] \\ N(n_b = 0) \equiv N_0 = N_{\text{tot}} [(1 - \epsilon_b^b)^2 R_b + (1 - \epsilon_j^b)^2 R_j]. \\ (R_j = 1 - R_b) \end{cases}$$

New Physics Through Flavor Tagging at FCC-ee

Toy model: R_h

- Two flavors only (b, j)
- $N_{\text{tot}} = \mathcal{L} \cdot \mathcal{A} \cdot \sigma(e^+e^- \rightarrow q\bar{q}) \rightarrow \text{total untagged events}$
 - $\epsilon_b^b = \underline{\text{True positive}}$ rate (prob. tag *b*-jet as *b*) = 1 ϵ_b^j $\epsilon_i^b = \text{False positive}$ rate (prob. tag *j*-jet as *b*) = 1 - ϵ_i^j

$$-2\log L = \sum_{n=1}^{\infty} \frac{1}{2}$$

- Fit parameters: $R_b \& N_{tot}, \epsilon_b^b$
- Asimov approximation: $N_i^{exp} \rightarrow N_i^{nominal}$

Toy model: R_h $-2\log L = \sum_{i} \frac{(N_i^{\exp} - N_i)^2}{N_i^{\exp}} + \frac{x^2}{(\delta_{\epsilon})^2}$ • Systematic uncertainty on taggers: $\epsilon_i^j \rightarrow \epsilon_i^j (1 + x)$, δ_{ϵ} from MC

Toy model:
$$R_b$$

 $-2 \log L = \sum_i \frac{(N_i^{\exp} - N_i)^2}{N_i^{\exp}} + \frac{x^2}{(\delta_{\epsilon})^2}$

- Systematic uncertainty on taggers: $\epsilon_i^j \rightarrow \epsilon_i^j (1 + x)$, δ_ϵ from MC
- Fit parameters: $R_b \& N_{tot}, \epsilon_b^b$
- Asimov approximation: $N_i^{\exp} \rightarrow N_i^{\text{nominal}}$ $\left(\frac{\Delta R_b}{R_b}\right)^2 = \frac{1 \epsilon_b^b}{R_b}$

False positives stat $\leftarrow + \frac{2(\epsilon_b^b - \epsilon_b^b)}{\epsilon_b^b}$

False positives syst $\leftarrow + \frac{4(R_b - R_b^2)}{R_b^2}$

New Physics Through Flavor Tagging at FCC-ee

$$\frac{b}{b} (2 - \epsilon_b^b (2 - R_b)) \longrightarrow \text{True positives stat} \rightarrow \text{True positives stat} \rightarrow \frac{b}{N_{\text{tot}} R_b (\epsilon_b^b)^2} \rightarrow \frac{b}{N_{\text{tot}} R_b^2 (\epsilon_b^b)^3} \left(\frac{-1}{N_{\text{tot}} R_b^2 (\epsilon_b^b)^3} (\delta_{\epsilon})^2 + \mathcal{O}\left((\epsilon_j^b)^2 \right) \right)$$

$$\frac{b}{b} (2 - \epsilon_b^b) (2 - \epsilon_b^b)$$

Toy model: *R*_b

Blekmann et al (2024) DeepJetTransformer ROC curves at FCC-ee

- Realistically $\delta_{\epsilon} \simeq 0.01$, consider WW run
- Minimize $\Delta R_b/R_b$ with $\epsilon^b_j = \epsilon^b_c(\epsilon^b_b)$ (conservative)

Toy model: R_h

Blekmann et al (2024) DeepJetTransformer ROC curves at FCC-ee

New Physics Through Flavor Tagging at FCC-ee

- Realistically $\delta_{\epsilon} \simeq 0.01$, consider WW run
- Minimize $\Delta R_b/R_b$ with $\epsilon^b_i = \epsilon^b_c(\epsilon^b_b)$ (conservative)

$$\frac{\Delta R_b}{R_b} \simeq 2 \times 10^{-4} \begin{pmatrix} \epsilon_b^b \simeq 0.65 \\ \epsilon_j^b \simeq 10^{-3} \end{pmatrix}$$

Almost saturates naïve stat & theory limit

• LEP-II: $\Delta R_h/R_h \simeq O(0.01)$ LEP EW WG (2003,2013)

\rightarrow impressive $O(10^2)$ improvement!

Note: for role of additional background (e.g. collimated VV) see the paper Alessandro Valenti | University of Basel 15

Realistic fit: results

		Observable/FCC-ee Rel. Err. (10^{-3})	WW	Zh	$t ar{t}$	
		R_b	0.17	0.36	0.96	\rightarrow
		R_s	3.7	5.8	10	
		R_c	0.14	0.27	0.69	
assuming $\Delta m_t/m_t \lesssim O(0.1\%)$	stat ←	R_t	-	-	1.2	
from FCC-ee m_t runs	stat ←	$R_{ au,\mu}$	0.16	0.35	0.97	ρ=
syst (the	eory) ←	R_e	0.50	0.52	0.64	-

Solid $O(10^2)$ improvement compared to LEP-II

Room for improvement: *s*-tagging

New Physics Through Flavor Tagging at FCC-ee

Fit
$$R_b, R_s, R_s$$

Small correlations: e.g. WW

$$o = \begin{pmatrix} 1 & -0.006 & -0.006 & -0.006 & 0 \\ -0.006 & 1 & -0.006 & 0 \\ -0.22 & -0.006 & 0 \end{pmatrix}$$

Outline

1. Observables and flavor tagging above the Z-pole

2. SMEFT interpretation

3. Conclusion

 $\mathscr{L} = \mathscr{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i$ Consider *flavor conserving, non-universal* 4F interactions

$$\mathscr{L} = \mathscr{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathscr{O}_i$$
 Consider fla

• Tree-level: $2\ell 2q + 4\ell$ operators involving e

New Physics Through Flavor Tagging at FCC-ee

avor conserving, non-universal 4F interactions

$$e^+e^- (pr = 11)$$

$$2\ell^{2} \mathcal{Q}_{\ell q}^{(1)} \begin{vmatrix} (\bar{\ell}_{p}\gamma_{\mu}\ell_{r})(\bar{q}_{s}\gamma^{\mu}\ell_{r}) \\ \mathcal{O}_{\ell q}^{(3)} \\ \mathcal{O}_{\ell q}^{(3)} \end{vmatrix} (\bar{\ell}_{p}\gamma_{\mu}\tau^{I}\ell_{r})(\bar{q}_{s}\gamma^{\mu}\ell_{r}) \\ \mathcal{O}_{eu} & (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}\ell_{r}) \\ \mathcal{O}_{ed} & (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}\ell_{r}) \\ \mathcal{O}_{\ell u} & (\bar{\ell}_{p}\gamma_{\mu}\ell_{r})(\bar{d}_{s}\gamma^{\mu}\ell_{r}) \\ \mathcal{O}_{\ell d} & (\bar{\ell}_{p}\gamma_{\mu}\ell_{r})(\bar{d}_{s}\gamma^{\mu}\ell_{r}) \\ \mathcal{O}_{\ell eqd} & (\bar{\ell}_{p}^{j}e_{r})\epsilon_{jk}(\bar{q}_{s}^{k}u_{r}) \\ \mathcal{O}_{\ell equ} & (\bar{\ell}_{p}^{j}\sigma_{\mu\nu}e_{r})\epsilon_{jk}(\bar{q}_{s}^{k}u_{r}) \\ \mathcal{O}_{\ell equ} & (\bar{\ell}_{p}\gamma_{\mu}\ell_{r})(\bar{\ell}_{s}\gamma^{\mu}\ell_{r}) \\ \mathcal{O}_{\ell equ} & (\bar{\ell}_{p}\gamma_{\mu}$$

$$\mathscr{L} = \mathscr{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathscr{O}_i$$
 Consider fla

- <u>Tree-level</u>: $2\ell 2q + 4\ell$ operators involving ℓ
- Global likelihood with the 3 runs, one operation
 - \rightarrow set $c_i = 1 \Rightarrow$ lower bound on Λ
 - $\rightarrow \Delta R_a/R_a^{\rm SM} \sim s/\Lambda^2$: growth compensates precision deterioration
 - \rightarrow Alternative: pair-production *around* the Z-p

avor conserving, non-universal 4F interactions

$$e^{+}e^{-} (pr = 11)$$
ator at a time
$$2\ell 2q \begin{cases}
\mathcal{O}_{\ell q}^{(1)} & (\bar{\ell}_{p}\gamma_{\mu}\ell_{r})(\bar{q}_{s}\gamma^{\mu}\ell_{r})\\
\mathcal{O}_{eu}^{(3)} & (\bar{\ell}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}\ell_{r})\\
\mathcal{O}_{eu} & (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}\ell_{r})\\
\mathcal{O}_{ed} & (\bar{\ell}_{p}\gamma_{\mu}\ell_{r})(\bar{d}_{s}\gamma^{\mu}\ell_{r})\\
\mathcal{O}_{\ell d} & (\bar{\ell}_{p}\gamma_{\mu}\ell_{r})(\bar{\ell}_{s}\gamma^{\mu}\ell_{r})\\
\mathcal{O}_{\ell d} & (\bar{\ell}_{p}\gamma_{\mu}\ell_{r})\\
\mathcal{O}_{\ell d} & (\bar{\ell}_{p}\gamma_{\mu}\ell_$$

- LEP-II: R_a ratios
- (HL-)LHC: high- $p_T \bar{q}q \rightarrow e^+ e^-$ tails
- FCC-ee Z-pole: <u>1-loop RGE</u> –

 $(y_t^2 \text{ for top, gauge others})$

- LEP-II: R_a ratios
- (HL-)LHC: high- $p_T \bar{q}q \rightarrow e^+ e^-$ tails
- FCC-ee Z-pole: <u>1-loop RGE</u> –

New Physics Through Flavor Tagging at FCC-ee

 $(y_t^2 \text{ for top, gauge others})$

- Cs: atomic parity violation
- (HL-)LHC: high- $p_T \bar{q}q \rightarrow e^+ e^-$ tails
- FCC-ee Z-pole: <u>1-loop RGE</u> –

 q, ℓ e^{-} q, ℓ

 $(y_t^2 \text{ for top, gauge others})$

Outline

- 1. Observables and flavor tagging above the Z-pole
- 2. SMEFT interpretation
- 3. Conclusion

- Current results in flavor tagging at FCC-ee basically allow saturation of the naïve stat limit on R_b, R_c (for R_s improvement needed)
- R_{α} ratios above the Z-pole at FCC-ee:
- SMEFT RGE:

interplay/complementarity between Z-pole EWPO (1-loop) and above the pole (TL)

Thank you for your attention!

New Physics Through Flavor Tagging at FCC-ee

probe flavor conserving, non-universal new phyisics via 4F ops. up to $\mathcal{O}(50)$ TeV!

BACKUP

Other bounds

$$\begin{array}{l} \text{Oblique corrections} \\ \mathcal{L}_{\text{SMEFT}} \supset -\frac{\hat{W}}{4m_W^2} (D_{\rho} W^a_{\mu\nu})^2 - \frac{\hat{Y}}{4m_W^2} (\partial_{\rho} B_{\mu\nu})^2 \end{array}$$

EoM:

flavor conserving, non-universal 4F (TL *above* the Z-pole)

+

Higgs-fermion current operators (TL *at* the Z-pole)

New Physics Through Flavor Tagging at FCC-ee

	Othe	er bo	unds
	Λ [3333] [T Λ [FCC-ee	FCC-ee
	Λ^{i} $\left[1ev\right]$	Z, W -pole+ τ	above Z -pole
	$\Lambda^{(1)}_{\ell q}$	15.7	1.1
3rd aen only:	$\Lambda^{(3)}_{\ell q}$	14.0	5.1
901 01 July 1	Λ_{eu}	16.2	1.6
Duro DC offoot	Λ_{ed}	1.5	1.3
ruie na elleci,	$\Lambda_{\ell u}$	15.4	1.5
hoth of 7 and above	$\Lambda_{\ell d}$	1.5	1.3
DOLLI AL Z ALIO ADOVE	Λ_{qe}	16.7	1.1
	$\Lambda_{\ell\ell}$	1.0	1.0
	$\Lambda_{\ell e}$	2.1	1.5
	Λ_{ee}	3.5	2.4
	$\Lambda^{(1)}_{qq}$	13.1	2.4
	$\Lambda^{(3)}_{qq}$	8.4	7.1
	$\Lambda^{(1)}_{qu}$	9.4	1.4
	$\Lambda^{(1)}_{qd}$	3.1	0.9
	Λ_{uu}	12.1	1.9
	Λ_{dd}	0.4	2.3
	$\Lambda^{(1)}_{ud}$	2.8	1.9

4F operators around the Z-pole? Ge et al (2024)

Key:
$$\sigma_{Z,SM} \sim \frac{s}{(s-m_Z^2)^2+m_z^2}$$

$\sqrt{s} \supset m_7 \pm 5$ GeV: larger stat but relative effect suppressed Comparing results: stronger bounds above the pole

Flavor-vic

$$R_{ij} = \frac{\sigma(e^+e^- \to e^-)}{\sum_{k,l}}$$

Consider only N_{ij} (contrib. to other bins negligible)

$$E[S] = s/\sigma_b$$

$$\sigma_b \simeq (b + \sum_k \sigma_{b,k})^{1/2}$$

$$R_{ij} \lesssim 1.645 \frac{\sigma_b}{N_{\text{tot}} \epsilon_i^i \epsilon_j^j} \quad (95\% \text{ CL})$$

blating ratios			
$\bar{q}_i q_j) + \sigma(e^+ e^- \rightarrow \bar{q}_j q_i)$			
$\sigma(e^+e^- \to \bar{q}_k q_l)$	Energy	ij	R_{ij}
	WW	$bs \\ bd \\ cu$	$2.80 \cdot 10 \ 3.44 \cdot 10 \ 5.28 \cdot 10$
Result	Zh	$bs \\ bd \\ cu$	$6.37 \cdot 10 \\ 6.58 \cdot 10 \\ 1.10 \cdot 10$
	$t\bar{t}$	$bs \\ bd \\ cu$	$1.79 \cdot 10 \\ 1.53 \cdot 10 \\ 2.70 \cdot 10$

Flavor-violating ratios SMEFT interpretation: $|\Lambda_{1123}| > 16 \,\text{TeV}$ for $|\Lambda_{1113}| > 9.4 \,\text{TeV}$ for $|\Lambda_{1112}| > 8.1 \,\text{TeV}$ for

Bounds generally weaker/comparable with ones from hadronic decays

New Physics Through Flavor Tagging at FCC-ee

$$egin{aligned} &\mathcal{O}_{\ell q}^{(1)},\mathcal{O}_{\ell q}^{(3)},\mathcal{O}_{\ell d},\mathcal{O}_{ed},\mathcal{O}_{qe},\ &\mathcal{O}_{\ell q}^{(1)},\mathcal{O}_{\ell q}^{(3)},\mathcal{O}_{\ell d},\mathcal{O}_{ed},\mathcal{O}_{qe},\mathcal{O}_{qe}\ &\mathcal{O}_{\ell q}^{(1)},\mathcal{O}_{\ell q}^{(3)},\mathcal{O}_{\ell u},\mathcal{O}_{eu},\mathcal{O}_{eu},\mathcal{O}_{qe} \end{aligned}$$

