Tracing the bottom EW dipole operators at future lepton colliders

Xiaoze Tan

DESY & Fudan U.

8th FCC Physics workshop @ CERN Jan. 14, 2025

based on arXiv: 2410.05398, in collaboration with Jiayin Gu, Jiayu Guo

Xiaoze Tan (DESY & FDU)

Bottom EW dipole operators at future lepton colliders

Motivation

- "What is next beyond SM?"
- New lepton colliders are expected to be on their way
 → A telescope to high scale physics (luminosity frontier)
- Especially for circular ones \rightarrow Higgs/Z factories & EW precision test
- For new physics scale $\Lambda \gg E$, *v*, Standard Model Effective Field Theory (SMEFT) provides an effective and model independent tool

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \cdots$$

· This study will focus on EW sector about bottom dipole operators

Z-pole status

Some Z pole observables [PDG2023]

Quantity	Exp. Value	SM prediction
M _Z [GeV]	91.1876 ± 0.0021	91.1882 ± 0.0020
Γ_Z [GeV]	2.4955 ± 0.0023	2.4941 ± 0.0009
σ_{had} [nb]	41.481 ± 0.033	41.482 ± 0.008
R_e	20.804 ± 0.050	20.736 ± 0.010
R_b	0.21629 ± 0.00066	0.21582 ± 0.00002
R_c	0.1721 ± 0.0030	0.17221 ± 0.00003
$A_{FB}^{(0,e)}$	0.0145 ± 0.0025	0.01617 ± 0.00007
$A_{FB}^{(0,b)}$	0.0996 ± 0.0016	0.1029 ± 0.0002
$A_{FB}^{(0,c)}$	0.0707 ± 0.0035	0.0735 ± 0.0002
A_e	0.1498 ± 0.0049	0.1468 ± 0.0003
A_b	0.923 ± 0.020	0.9347
A_c	0.670 ± 0.027	0.6677 ± 0.0001

* For Ae, only LEP 1 results shown here

- Most observables are measured precisely and consistent with theoretical prediction.
- Except A_{FB} for *b*-quark, still exist ~ 2 σ deviation.
- At future lepton colliders, trillion Z bosons could be produced.

 \Rightarrow Opportunity to reveal potential BSM NP with much improved precision.

SMEFT & dipole operators

Many global fit analysises are performed

SMEFT & dipole operators

SMEFT dim-6 dipole operators

(Warsaw basis, 3rd generation quarks)

$$\begin{aligned} O_{tW} &= \left(\bar{q}_{\rm L} \sigma^{\mu\nu} \tau^I t_{\rm R}\right) \tilde{H} W^{\dagger}_{\mu\nu}, \qquad O_{bW} &= \left(\bar{q}_{L} \sigma^{\mu\nu} b_{R}\right) \sigma^i H W^i_{\mu\nu}, \\ O_{tB} &= \left(\bar{q}_{\rm L} \sigma^{\mu\nu} t_{\rm R}\right) \tilde{H} B_{\mu\nu}, \qquad O_{bB} &= \left(\bar{q}_{L} \sigma^{\mu\nu} b_{R}\right) H B_{\mu\nu}. \end{aligned}$$

where, $\sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}], W^{i}_{\mu\nu} = \partial_{\mu}W^{i}_{\nu} - \partial_{\nu}W^{i}_{\mu} - g_{W}\varepsilon^{ijk}W^{j}_{\mu}W^{k}_{\nu}$ (similar form of $B_{\mu\nu}$)

- Generally, the leading effect from interference of dipole and SM $\propto m_f v / \Lambda^2$
- Top is the exception, constraint of its dipole at LHC:

 $C_{tw} = [-1.2, +1.4](\Lambda / \text{TeV})^2$ and $C_{tB} = [-1.9, +1.2](\Lambda / \text{TeV})^2$ (*ttZ*/ γ measurement @ LHC Run2, 95% CL) [M. Schulze, Y. Soreq 1603.08911]

$Zb\overline{b}$ dipole can be traced

• Future lepton colliders (e.g. FCC-ee/CEPC):

tremendous amount of Z events + higher precision of measurements \Rightarrow possible to trace $Zb\bar{b}$ dipole

• Z pole observables

$$\begin{split} R_b &= \frac{\Gamma(Z \to dd)}{\sum_q \Gamma(Z \to q\bar{q})} \\ A_\ell &= \frac{\Gamma(Z \to \ell_L \bar{\ell}_L) - \Gamma(Z \to \ell_R \bar{\ell}_R)}{\Gamma(Z \to \ell\bar{\ell})} \\ A_b &= \frac{\Gamma(Z \to b_L \bar{b}_L) - \Gamma(Z \to b_R \bar{b}_R)}{\Gamma(Z \to b\bar{b})} \\ A_{FB}^b &= \frac{3}{4} A_\ell A_b \end{split}$$

• Off pole scattering

$$A_{FB}^b = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

• Projections of CEPC here (similar for FCC-ee)

Quantity	Projected Precision	Runs
ΔR_b	4.4×10^{-5}	Z pole
ΔA_e	$1.5 imes 10^{-5}$	Z pole
ΔA_b	2.1×10^{-4}	Z pole
$\sigma(b\bar{b})$ [fb]	275.64 ± 0.12	$\sqrt{s} = 240 \text{ GeV}$
$A_{FB}(b\bar{b})$	0.592 ± 0.00034	$\sqrt{s} = 240 \text{ GeV}$
$\sigma(b\bar{b})$ [fb]	108.33 ± 0.33	$\sqrt{s} = 360 \text{ GeV}$
$A_{FB}(b\bar{b})$	0.602 ± 0.0024	$\sqrt{s} = 360 \text{ GeV}$

 $([c_{\theta}^{min}, c_{\theta}^{max}] = [-0.9, 0.9], \epsilon = 0.15)$

[J.D. Blas et al., 2206.08326 (Snowmass2021)]

$Zb\overline{b}$ dipole and the Lagrangian

- SMEFTsim package was used to extract dipole coupling and calculate observables [Brivio et al. 2012.11343]
- Effective Lagrangian with effective $\gamma/Zb\bar{b}$ couplings

$$\begin{split} \mathcal{L} &\supset -eA_{\mu}\bar{b}\gamma^{\mu}b - \frac{g}{\cos\theta_{W}}Z_{\mu}\left(g_{Lb}\bar{b}_{L}\gamma^{\mu}b_{L} + g_{Rb}\bar{b}_{R}\gamma^{\mu}b_{R}\right) \\ &+ \frac{\kappa_{bA}}{m_{b}}\left(\bar{b}\sigma^{\mu\nu}b\right)A_{\mu\nu} + \frac{\kappa_{bZ}}{m_{b}}\left(\bar{b}\sigma^{\mu\nu}b\right)Z_{\mu\nu}\,, \end{split}$$

• Coefficients and relations { δg_{Lb} , δg_{Rb} , κ_{bA} , κ_{bZ} }:

$$g_{Lb} = -\frac{1}{2} + \frac{1}{3} \sin^2 \theta_W + \delta g_{Lb}, \quad g_{Rb} = \frac{1}{3} \sin^2 \theta_W + \delta g_{Rb},$$

$$\delta g_{Lb} = (c_{Hq}^{(1)} + c_{Hq}^{(3)}) \frac{v^2}{2\Lambda^2}, \quad \delta g_{Rb} = c_{Hb} \frac{v^2}{2\Lambda^2},$$

$$\kappa_{bZ} = \frac{m_b v}{\sqrt{2}\Lambda^2} \left(\cos \theta_W c_{bW} + \sin \theta_W c_{bB}\right), \quad \kappa_{bA} = \frac{m_b v}{\sqrt{2}\Lambda^2} \left(\cos \theta_W c_{bB} - \sin \theta_W c_{bW}\right).$$

- For convenience, set $\Lambda = 1$ TeV and only keep real parts of dipole WCs
- 4 parameters included, and ratio of γ and Z diagrams varies from energy ⇒ need to include Z pole and off pole measurements.
- Central values of future measurements are assume to be SM-like.

*global fit analysis with $\{\delta g_{Lb}, \delta g_{Rb}, \kappa_{bA}, \kappa_{bZ}\}$ in this and following page

Squared items contribution

A generic observable has the form:

$$\sigma = \sigma_{\rm SM} + \sum_{\alpha} \sigma_{\alpha} C_a + \sum_{\alpha,\beta} \sigma_{\alpha\beta} C_{\alpha} C_{\beta}$$

where σ_{SM} , σ_{α} , $\sigma_{\alpha\beta}$ denote the SM, interference and squared contributions respectively. If not omit squared items (full fit)

Z pole + 240 GeV

• 2nd non-SM best fit: { δg_{Lb} , δg_{Rb} , κ_{bA} , κ_{bZ} } = {-3.84, -5.19, -0.105, -0.980} × 10^{-4}

Squared items contribution

Extra off pole measurement

- · Squared terms of the dipole contributions play important role in the full fit.
- Including more off pole measurement:
 - \Rightarrow may be minor contribution in the linear fit,
 - \Rightarrow help to lift the 2nd non-SM best fit point.

χ^2 constrain analysis

1 σ bound and correlation matrix ρ (effective coupling)

	Linear fit	Correlation ρ			Full fit	
	1σ bound (×10 ⁻⁴)	δg_{Lb}	δg_{Rb}	κ_{bZ}	κ_{bA}	1σ bound (×10 ⁻⁴)
δg_{Lb}	±2.66	1				[-5.34, 1.87]
δg_{Rb}	±3.17	0.919	1			[-7.94, 2.32]
κ_{bZ}	±0.621	0.975	0.914	1		[-1.41, 0.398]
κ_{bA}	±0.249	0.804	0.784	0.868	1	[-0.228, 0.228]

Z pole + 240 GeV

Z pole + 240 GeV + 360 GeV

	Linear fit	Correlation ρ				Full fit
	1σ bound (×10 ⁻⁴)	δg_{Lb}	δg_{Rb}	κ_{bZ}	κ_{bA}	1σ bound (×10 ⁻⁴)
δg_{Lb}	±2.64	1				[-2.58, 1.50]
δg_{Rb}	±3.15	0.918	1			[-3.30, 2.10]
κ_{bZ}	±0.616	0.975	0.913	1		[-0.624, 0.304]
κ_{bA}	±0.247	0.803	0.783	0.868	1	[-0.126, 0.168]

* $\chi^2 = \sum_{ij} (\hat{c}_i - \hat{c}_i^0) \sigma_{ij}^{-2} (\hat{c}_j - \hat{c}_j^0)$, where $\sigma_{ij}^{-2} = [\delta \hat{c}_i \rho_{ij} \delta \hat{c}_j]^{-1}$ [1411.0669]

χ^2 constrain analysis

1 σ bound and correlation matrix ρ (in Warsaw basis)

	Linear fit	Correlation ρ			Full fit	
	1σ bound (×10 ⁻²)	$(c_{Hq}^{(1)} + c_{Hq}^{(3)})$	c_{Hb}	C_{bB}	c_{bW}	1σ bound (×10 ⁻²)
$(c_{Hq}^{(1)} + c_{Hq}^{(3)})$	±0.877	1				[-1.76, 0.617]
c_{Hb}	±1.05	0.919	1			[-2.62, 0.765]
C_{bB}	±6.82	0.933	0.887	1		[-9.90, 5.10]
c_{bW}	±6.17	0.978	0.908	0.938	1	[-17.0, 3.75]

Z pole + 240 GeV

Z pole + 240 GeV + 360 GeV

	Linear fit	Correlation ρ			Full fit	
	1σ bound (×10 ⁻²)	$(c_{Hq}^{(1)} + c_{Hq}^{(3)})$	c_{Hb}	C_{dB}	C_{dW}	1σ bound (×10 ⁻²)
$(c_{Hq}^{(1)} + c_{Hq}^{(3)})$	±0.871	1				[-0.851, 0.495]
c_{Hb}	±1.04	0.918	1			[-1.09, 0.693]
c_{bB}	±6.76	0.932	0.887	1		[-4.80, 3.75]
c_{bW}	±6.13	0.978	0.907	0.939	1	[-7.20, 2.80]

*
$$\chi^2 = \sum_{ij} (\hat{c}_i - \hat{c}_i^0) \sigma_{ij}^{-2} (\hat{c}_j - \hat{c}_j^0)$$
, where $\sigma_{ij}^{-2} = [\delta \hat{c}_i \rho_{ij} \delta \hat{c}_j]^{-1}$ [1411.0669]

Recall the LEP $A_{FB}^{0,b}$ **discrepancy**

*Constraints from LEP in $\{\kappa_{bZ}, \delta g_{Lb}\}$ and $\{\kappa_{bZ}, \delta g_{Rb}\}$ plane individually here.

*Existing problem: $|\kappa_{bZ}| \sim 0.001$ to generate such $A_{FB}^{0,b}$. Assuming $c_{bW}, c_{bB} \sim 1/16\pi^2 \Rightarrow \Lambda \lesssim 10^2$ GeV...

Summary

- SMEFT & dipole
 - Dipoles are usually overlooked in the analysises (Except the heavy top).
 - dim-6 dipole operators might contribute to the A_{FB} inconsistency.
- \bullet Future lepton collider offers opportunity to trace $Zb\bar{b}$ dipole
 - Z pole measurements \Rightarrow only flat constraint.
 - Off Z pole measurement \Rightarrow interference of γ and Z diagram \Rightarrow closed constraint.
 - Quadratic items also give contribution (full fit).
 - · All runs are essential: extra off pole measurements lift the non-SM best-fit.
 - Our estimation (Z pole + 240 + 360 GeV): $k_{bZ} = [-0.624, 0.304] \times 10^{-4}, k_{bA} = [-0.126, 0.168] \times 10^{-4}.$
- More efforts are needed and in progress
 - Further combined analysis, distributions ...
 - More off pole analysises at other future lepton colliders ...
 - Appropriate models to contribute such $A_{FB}^{0,b}$ discrepancy...

Thank you!

Backups

Backups

Quadratic items contribution - backup

Preferred region (Full fit, in Warsaw basis) Z pole + 240 GeV

Backups

	${\cal L}_6^{(6)}-\psi^2 X H$		$\mathcal{L}_{c}^{(7)} - \psi^2 H^2 D$
Q_{eW}	$(\bar{l}_p\sigma^{\mu\nu}e_r)\sigma^iHW^i_{\mu\nu}$	$O^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}H)(\overline{I}\gamma^{\mu}I)$
Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	Q_{Hl}	$(H^{\dagger}iD_{\mu}H)(\bar{i}_{p}\gamma^{\prime}i_{r})$
Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^a u_r) \widetilde{H} G^a_{\mu\nu}$	Q_{Hi}	$(H^{\dagger}i D^{*}_{\mu}H)(l_{p}\sigma^{*}\gamma^{\mu}l_{r})$
Q_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \sigma^i \widetilde{H} W^i_{\mu u}$	Q_{He}	$(H^{\dagger}i D_{\mu}H)(\bar{e}_p\gamma^{\mu}e_r)$
Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	$Q_{Hq}^{\left(1 ight) }$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$
Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^a d_r) H G^a_{\mu\nu}$	$Q_{Hq}^{\left(3 ight) }$	$(H^{\dagger}i\overleftrightarrow{D}{}^{i}_{\mu}H)(ar{q}_{p}\sigma^{i}\gamma^{\mu}q_{r})$
Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \sigma^i H W^i_{\mu\nu}$	Q_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(ar{u}_{p}\gamma^{\mu}u_{r})$
Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$	Q_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$
		$Q_{Hud} + {\rm h.c.}$	$i(\widetilde{H}^{\dagger}D_{\mu}H)(ar{u}_{p}\gamma^{\mu}d_{r})$

[arXiv:2012.11343]

Dipole operators of dim-6 SMEFT in the Warsaw basis.

Global SMEFT fit

[arXiv:2206.08326]

EWPOs FCC-ee

Quantity	current	ILC250	ILC-GigaZ	FCC-ee	CEPC	CLIC380
$\Delta \alpha(m_Z)^{-1} (\times 10^3)$	17.8*	17.8*		3.8 (1.2)	17.8*	
Δm_W (MeV)	12*	0.5(2.4)		0.25(0.3)	0.35(0.3)	
Δm_Z (MeV)	2.1^{*}	0.7(0.2)	0.2	0.004 (0.1)	0.005(0.1)	2.1*
Δm_H (MeV)	170*	14		2.5 (2)	5.9	78
$\Delta \Gamma_W$ (MeV)	42*	2		1.2(0.3)	1.8(0.9)	
$\Delta \Gamma_Z$ (MeV)	2.3^{*}	1.5(0.2)	0.12	$0.004 \ (0.025)$	0.005(0.025)	2.3*
$\Delta A_e ~(\times 10^5)$	190*	14(4.5)	1.5(8)	0.7 (2)	1.5	64
$\Delta A_{\mu} (\times 10^5)$	1500^{*}	82(4.5)	3 (8)	2.3(2.2)	3.0(1.8)	400
$\Delta A_{\tau} (\times 10^5)$	400*	86(4.5)	3 (8)	0.5 (20)	1.2(6.9)	570
$\Delta A_b (\times 10^5)$	2000*	53 (35)	9 (50)	2.4 (21)	3 (21)	380
$\Delta A_c (\times 10^5)$	2700*	140(25)	20 (37)	20 (15)	6 (30)	200
$\Delta \sigma_{\rm had}^0$ (pb)	37*			0.035 (4)	0.05(2)	37*
$\delta R_e (\times 10^3)$	2.4^{*}	0.5(1.0)	0.2(0.5)	0.004 (0.3)	0.003(0.2)	2.7
$\delta R_{\mu} (\times 10^3)$	1.6^{*}	0.5(1.0)	0.2(0.2)	0.003(0.05)	0.003(0.1)	2.7
$\delta R_{\tau} (\times 10^3)$	2.2^{*}	0.6(1.0)	0.2(0.4)	0.003(0.1)	0.003(0.1)	6
$\delta R_b \ (imes 10^3)$	3.0^{*}	0.4(1.0)	0.04(0.7)	0.0014 (< 0.3)	0.005(0.2)	1.8
$\delta R_c(imes 10^3)$	17*	0.6(5.0)	0.2(3.0)	0.015(1.5)	0.02(1)	5.6

Table 3: EWPOs at future e^+e^- : statistical error (experimental systematic error). Δ

FCC-ee \sqrt{s} [GeV]	Final state	$\mathcal{L}\left[fb^{-1}\right]$	σ [fb]	A_{FB}	$[c_{\theta}^{\min},c_{\theta}^{\max}]$	ϵ	
	e^-e^+		77330.4 ± 3.87	$0.96{\pm}0.00001388$	[-0.9, 0.9]	0.98	
	$\mu^{-}\mu^{+}$		$1870.84{\pm}0.612$	$0.521 {\pm} 0.000279$	[-0.95, 0.95]	0.98	
240	$\tau^{-}\tau^{+}$	5000	$1589.15{\pm}0.564$	$0.506 {\pm} 0.000306$	[-0.9, 0.9]	0.9	
	cc		$93.38 {\pm} 0.1367$	$0.62 {\pm} 0.00115$	[-0.9, 0.9]	0.03	
	$b\overline{b}$		$275.64{\pm}0.235$	$0.592{\pm}0.000687$	[-0.9, 0.9]	0.15	
	e^-e^+		$34221.5 {\pm} 4.72$	$0.957{\pm}0.0000399$	[-0.9, 0.9]	0.98	
	$\mu^{-}\mu^{+}$		$787.74{\pm}0.725$	$0.488 {\pm} 0.000803$	[-0.95, 0.95]	0.98	Įa
365	$\tau^{-}\tau^{+}$	1500	$669.11 {\pm} 0.668$	$0.473 {\pm} 0.00088$	[-0.9, 0.9]	0.9	
	$c\overline{c}$		$38.11 {\pm} 0.1594$	$0.595 {\pm} 0.00336$	[-0.9, 0.9]	0.03	
	$b\overline{b}$		$105.12{\pm}0.2647$	$0.603 {\pm} 0.00201$	[-0.9, 0.9]	0.15	

[arXiv:2206.08326]

EWPOs CEPC

Quantity	current	ILC250	ILC-GigaZ	FCC-ee	CEPC	CLIC380
$\Delta \alpha(m_Z)^{-1} (\times 10^3)$	17.8*	17.8*		3.8 (1.2)	17.8*	
Δm_W (MeV)	12*	0.5(2.4)		0.25(0.3)	0.35(0.3)	
Δm_Z (MeV)	2.1*	0.7(0.2)	0.2	0.004 (0.1)	0.005(0.1)	2.1^{*}
Δm_H (MeV)	170*	14		2.5 (2)	5.9	78
$\Delta \Gamma_W$ (MeV)	42*	2		1.2(0.3)	1.8(0.9)	
$\Delta \Gamma_Z$ (MeV)	2.3^{*}	1.5(0.2)	0.12	$0.004 \ (0.025)$	0.005(0.025)	2.3^{*}
$\Delta A_e ~(\times 10^5)$	190*	14(4.5)	1.5(8)	0.7 (2)	1.5	64
$\Delta A_{\mu} (\times 10^5)$	1500^{*}	82(4.5)	3 (8)	2.3(2.2)	3.0(1.8)	400
$\Delta A_{\tau} (\times 10^5)$	400*	86(4.5)	3 (8)	0.5 (20)	1.2(6.9)	570
$\Delta A_b (\times 10^5)$	2000*	53 (35)	9 (50)	2.4 (21)	3 (21)	380
$\Delta A_c (\times 10^5)$	2700*	140(25)	20 (37)	20 (15)	6 (30)	200
$\Delta \sigma_{\rm had}^0$ (pb)	37*			0.035 (4)	0.05(2)	37*
$\delta R_e (\times 10^3)$	2.4^{*}	0.5(1.0)	0.2(0.5)	0.004 (0.3)	0.003(0.2)	2.7
$\delta R_{\mu} (\times 10^3)$	1.6^{*}	0.5(1.0)	0.2(0.2)	0.003(0.05)	0.003(0.1)	2.7
$\delta R_{\tau} (\times 10^3)$	2.2^{*}	0.6(1.0)	0.2(0.4)	0.003(0.1)	0.003(0.1)	6
$\delta R_b \ (imes 10^3)$	3.0^{*}	0.4(1.0)	0.04(0.7)	0.0014 (< 0.3)	0.005(0.2)	1.8
$\delta R_c(imes 10^3)$	17*	0.6(5.0)	0.2(3.0)	0.015(1.5)	0.02(1)	5.6

Table 3: EWPOs at future e^+e^- : statistical error (experimental systematic error). Δ

CEPC \sqrt{s} [GeV]	Final state	$\mathcal{L} \left[\mathrm{fb}^{-1} \right]$	σ [fb]	A_{FB}	$[c_{\theta}^{\min},c_{\theta}^{\max}]$	e	
	e^-e^+		$77330.4 {\pm} 1.937$	$0.96{\pm}0.00000694$	[-0.9, 0.9]	0.98	
	$\mu^{-}\mu^{+}$		$1870.84{\pm}0.306$	$0.521{\pm}0.0001395$	[-0.95, 0.95]	0.98	
240	$\tau^-\tau^+$	5000	$1589.15 {\pm} 0.282$	$0.506 {\pm} 0.000153$	[-0.9, 0.9]	0.9	
	cc		$93.38 {\pm} 0.0683$	$0.62 {\pm} 0.000574$	[-0.9, 0.9]	0.03	
	$b\overline{b}$		$275.64{\pm}0.1174$	$0.592{\pm}0.0003434$	[-0.9, 0.9]	0.15	
	e^-e^+		35147.9 ± 5.85	$0.957 {\pm} 0.0000482$	[-0.9, 0.9]	0.98	
360	$\mu^{-}\mu^{+}$		810.18 ± 0.9	$0.4885 {\pm} 0.00097$	[-0.95, 0.95]	0.98	[arXiv:2206.08326]
	$\tau^{-}\tau^{+}$	1500	$688.17 {\pm} 0.83$	$0.474 {\pm} 0.001061$	[-0.9, 0.9]	0.9	
	$c\overline{c}$		$39.22 {\pm} 0.198$	$0.596 {\pm} 0.004056$	[-0.9, 0.9]	0.03	
	$b\overline{b}$		108.33 ± 0.329	0.602 ± 0.002425	[-0.9, 0.9]	0.15	

χ^2 constrain comparison - backup

Present Z pole data (PDG) vs Z pole estimation in the future

*(analyze individually for $\delta g_{Lb} - \delta g_{Rb}$ and $C_{bB} - C_{bW}$ only in this page)

Flat constraint only \Rightarrow We need off Z pole run for combined analysis.