Imprints of SUSY at FCC-ee

Collaborators: Simon Knapen, Zoltan Ligeti Paper: <u>2407.13815</u>

Kevin Langhoff

- **FCC Workshop**
- (Jan. 14th 2025)

Isn't SUSY dead?

Isn't SUSY dead? No

The Electroweak Hierarchy Problem

Kevin Langhoff - FCC Workshop 2025

The Electroweak Hierarchy Problem

The Electroweak Hierarchy Problem

Why still consider SUSY in 2025?

View of the believer

- The hierarchy problem hasn't gone away; it is even more puzzling. Maybe there is fine tuning...
- SUSY is the unique extension of spacetime symmetry (for theories with S matrices).
- The thermal Higgsino is still a good DM candidate. Gauge coupling unification is predicted.

Should be taken seriously.

View of the skeptic

- SUSY is well defined with few parameters and represents how new physics may show up. • Not too many better ideas for solving the big hierarchy problem...

SUSY is not the main motivation for FCC-ee... But could the FCC-ee discover SUSY?

Very Obvious Statement

Discovery correlates with technological advancement.

Very Obvious Statement

Discovery correlates with technological advancement.

Kevin Langhoff - FCC Workshop 2025

Kevin Langhoff - FCC Workshop 2025

Kevin Langhoff - FCC Workshop 2025

What experiment explores the highest energy scales?

Kevin Langhoff - FCC Workshop 2025

What experiment explores the highest energy scales?

LHC?

Directly explores energy scales $\Lambda \sim 10^3$ GeV.

Kevin Langhoff - FCC Workshop 2025

What experiment explores the highest energy scales?

LHC?

Directly explores energy scales $\Lambda \sim 10^3$ GeV.

Kevin Langhoff - FCC Workshop 2025

Super-Kamiokande

Indirectly explores energy scales $\Lambda \sim 10^{16}$ GeV. Searching for decays using 10^{34} protons.

Can the FCC-ee See What The LHC Can't?

BERKELEY LAB

- Running motivates $m_{colored} > m_{uncolored}$.
- EWPTs are more sensitive to lighter particles.
- Alternatively, folded SUSY (for example) has no colored sparticles.

EWPTs on color neutral sparticles may beat LHC direct searches.

	ſ		h
	l	_	ļ

Motivation 2: Blind Spots at the LHC

Kevin Langhoff - FCC Workshop 2025

How could the FCC-ee see SUSY?

Simplified Models

To make progress, I will consider the following simplified models:

$U(1)_{Y}$ Dominated Model

$\tilde{B}(1, 1)_{0}$	Pure Bino
$\tilde{E}(1, 1)_1$	Right Handed Slepton

A bit overly simplified, but gives us an idea of the sensitivity of the FCC-ee.

Kevin Langhoff - FCC Workshop 2025

$SU(2)_L$ Dominated Model

$\tilde{W}(1, 3)_0$	Pure Wino
$\tilde{L}(1, 2)_{-1/2}$	Left Handed Slepton

Corrections from SUSY (1-Sparticle Level)

- If we assume R-parity conservation, all corrections are at 1-loop.
- Dominant effects from "oblique corrections" if considering only a single sparticle.

• FCC sensitivity at the $\mathcal{O}(\text{ few 100 GeV})$ level (not the focus of this talk).

$\widehat{S} imes \left(rac{m_X^2}{m_W^2} ight)$	$\widehat{T} \times \left(\frac{m_X^2}{m_W^2}\right)$	$W imes \left(rac{m_X^2}{m_W^2} ight)$	$Y \times \left(\frac{m_X^2}{m_W^2}\right)$
0	0	0	$\frac{\alpha_Y}{40\pi}$
$-rac{lpha_W c_{2eta}}{16\pi}$	$rac{lpha_W c_{2eta}^2}{16\pi}$	$\frac{\alpha_W}{80\pi}$	$\frac{\alpha_Y}{80\pi}$
0	0	0	0
0	0	$\frac{\alpha_W}{15\pi}$	0

Marandella, Schappacher, Strumia [<u>hep-ph/0502095</u>]

Non-Universal Corrections to Z-pole Observables

Let $\tilde{\chi} = (\tilde{W}, \tilde{B})$ and $\tilde{\ell} = (\tilde{L}, \tilde{e})$.

Kevin Langhoff - FCC Workshop 2025

(Just one of several diagrams)

Non-Universal Corrections to Z-pole Observables

Let $\tilde{\chi} = (\tilde{W}, \tilde{B})$ and $\tilde{\ell} = (\tilde{L}, \tilde{e})$.

Kevin Langhoff - FCC Workshop 2025

Finding a robust observable

 $\Gamma(Z \to \ell \bar{\ell})$ is not the best observable. Instead we use

- Also depends on θ_W . We will identify this from

 $\sin^2\hat{\theta}_W\cos$

This choice introduces modifications from oblique corrections.

Kevin Langhoff - FCC Workshop 2025

 $R_{\ell} \equiv \frac{\Gamma(Z \rightarrow \text{hadrons})}{\Gamma(Z \rightarrow \ell \bar{\ell})}$

• Hadronic decay introduces $\alpha_s(M_Z)$ dependence. This must be determined by other measurements.

$$s^2 \hat{\theta}_W \equiv \frac{\pi \hat{\alpha} \left(m_Z \right)}{\sqrt{2} \hat{G}_F \hat{m}_Z^2}$$

Kevin Langhoff - FCC Workshop 2025

Kevin Langhoff - FCC Workshop 2025

Kevin Langhoff - FCC Workshop 2025

Kevin Langhoff - FCC Workshop 2025

Wino + LH Sleptons

Kevin Langhoff - FCC Workshop 2025

Wino + LH Sleptons

Kevin Langhoff - FCC Workshop 2025

Wino + LH Sleptons

Conclusion

- EWPTs are complimentary searches for new physics.
- SUSY parameter space exists which may be explored at the FCC-ee.
- Motivates investigating which observables give the greatest reach to new physics.

Thanks!

Backup Slides

• SM has many more observables than parameters \implies Predictions!

• SM has many more observables than parameters \implies Predictions!

$$\mathcal{L} = -\frac{1}{4g'^2} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4g^2} W^A_{\mu\nu} W^{A\,\mu\nu} + |D_\mu H|^2 - \frac{\lambda}{4} |H|^2 \left(|H|^2 - \frac{v^2}{2} \right)$$

• SM has many more observables than parameters \implies Predictions!

$$\mathcal{L} = -\frac{1}{4g'^2} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4g^2} W^A_{\mu\nu} W^{A\,\mu\nu} + |D_\mu H|^2 - \frac{\lambda}{4} |H|^2 \left(|H|^2 - \frac{v^2}{2} \right)$$

Observables

1.
$$G_F = \left(\sqrt{2}v^2\right)^{-1}$$
 3. $m_Z = \frac{1}{2}\sqrt{g^2 + g'^2}v$
2. $m_W = \frac{1}{2}gv$ 4. $\sin\theta_W = \frac{g'}{\sqrt{g^2 + g'^2}}$

Kevin Langhoff - FCC Workshop 2025

• SM has many more observables than parameters \implies Predictions!

$$\mathcal{L} = -\frac{1}{4g'^2} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4g^2} W^A_{\mu\nu} W^{A\,\mu\nu} + |D_\mu H|^2 - \frac{\lambda}{4} |H|^2 \left(|H|^2 - \frac{v^2}{2} \right)$$

Observables

1.
$$G_F = \left(\sqrt{2}v^2\right)^{-1}$$
 3. $m_Z = \frac{1}{2}\sqrt{g^2 + g'^2}v$
2. $m_W = \frac{1}{2}gv$ 4. $\sin\theta_W = \frac{g'}{\sqrt{g^2 + g'^2}}$

Prediction

$$\rho \equiv \frac{m_W^2}{m_Z^2 \cos^2 \theta_w} = 1 \qquad \text{(At tree level)}$$

• SM ł

has many more observables than parameters
$$\implies$$
 Predictions!

$$\mathcal{L} = -\frac{1}{4g'^2} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4g^2} W^A_{\mu\nu} W^{A\mu\nu} + |D_\mu H|^2 - \frac{\lambda}{4} |H|^2 \left(|H|^2 - \frac{v^2}{2} \right)$$
Observables
$$G_F = \left(\sqrt{2}v^2 \right)^{-1} \quad 3. \quad m_Z = \frac{1}{2} \sqrt{g^2 + g'^2} v$$

$$m_W = \frac{1}{2}gv \qquad 4. \quad \sin \theta_W = -\frac{g'}{m_Z^2 \cos^2 \theta_W} = 1 \quad \text{(At tree left)}$$

SM has many more observables than parameters
$$\implies$$
 Predictions!

$$\mathcal{L} = -\frac{1}{4g'^2} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4g^2} W^A_{\mu\nu} W^{A\,\mu\nu} + |D_\mu H|^2 - \frac{\lambda}{4} |H|^2 \left(|H|^2 - \frac{v^2}{2} \right)$$
Observables
$$M_{\mu\nu} = \frac{1}{2} \sqrt{g^2 + g'^2} v$$

$$P_{\mu\nu} = \frac{1}{2} \sqrt{g^2 + g'^2} v$$

$$P_{\mu\nu} = \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = 1 \quad \text{(At tree let in the second seco$$

• Checks like this give us a method of indirectly discovering new physics!

Kevin Langhoff - FCC Workshop 2025

The diagrams for Higgs boson mass corrections are the following:

If SUSY is exact. But it is broken...

Kevin Langhoff - FCC Workshop 2025

When SUSY is broken, the Higgs gets corrections

 $\Delta m_H^2 = \Delta m_{H,fermions}^2 + \Delta m_{H,bosons}^2 \propto \frac{3y_t^2 m_{\tilde{t}}^2}{4\pi^2} \log(m_{\tilde{t}}/m_t)$

When SUSY is broken, the Higgs gets corrections

When SUSY is broken, the Higgs gets corrections

When SUSY is broken, the Higgs gets corrections

When SUSY is broken, the Higgs gets corrections

BERKELEY LAB

Kevin Langhoff - FCC Workshop 2025

Kevin Langhoff - FCC Workshop 2025

Kevin Langhoff - FCC Workshop 2025

Electroweak Precision Tests at the Z-pole

There are many measurements which can performed at the Z-pole.

Many measurements are systematics limited! Which systematics should we prioritize reduci

ı be	Observable	Present value \pm error	FCC-ee Stat.	FCC-ee S
	m _Z (keV)	$91,186,700 \pm 2200$	5	100
	Γ_Z (keV)	$2,495,200 \pm 2300$	8	100
	$\mathbf{R}^{\mathbf{Z}}_{\ell}$ (×10 ³)	$20,767\pm25$	0.06	0.2–1.0
	$\alpha_{\rm s} \ ({\rm m_Z}) \ (\times 10^4)$	1196 ± 30	0.1	0.4–1.6
	R_{b} (×10 ⁶)	$216,290 \pm 660$	0.3	< 60
	$\sigma_{\rm had}^0$ (×10 ³) (nb)	$41,541 \pm 37$	0.1	4
-	N_{ν} (×10 ³)	2991 ± 7	0.005	1
	$\sin^2 \theta_W^{\text{eff}}$ (×10 ⁶)	$231,480 \pm 160$	3	2–5
	$1/\alpha_{QED}$ (m _Z) (×10 ³)	$128,952\pm14$	4	Small
	$A_{FB}^{b,0}$ (×10 ⁴)	992 ± 16	0.02	1–3
-	$A_{FB}^{pol,\tau}$ (×10 ⁴)	1498 ± 49	0.15	< 2
	m _W (MeV)	$80,350 \pm 15$	0.5	0.3
	Γ_W (MeV)	2085 ± 42	1.2	0.3
	$\alpha_{\rm s}~({\rm m_W})~(\times 10^4)$	1170 ± 420	3	Small
	$N_{\nu} (\times 10^3)$	2920 ± 50	0.8	Small
	m _{top} (MeV)	$172,740\pm500$	17	Small
	Γ_{top} (MeV)	1410 ± 190	45	Small
	$\lambda_{top}/\lambda_{top}^{SM}$	1.2 ± 0.3	0.1	Small
ing?	ttZ couplings	$\pm 30\%$	0.5-1.5%	Small

[FCC CDR]

ATLAS SUSY Searches* - 95% CL Lower Limits July 2020

	Model	Signatu	r e j	∫£ dt [fb [−]	'] Ma	ss limit				Reference
S	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$	0 e, µ 2-6 jets mono-jet 1-3 jets	$E_{\mathcal{T}}^{\text{miss}}$ $E_{\mathcal{T}}^{\text{miss}}$	139 36.1	 <i>q</i> [10x Degen.] <i>q</i> [1×, 8× Degen.] 	0.43 0.71		1.9	$m(\tilde{\chi}_{1}^{0}) < 400 \text{ GeV}$ $m(\tilde{q})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}$	ATLAS-CONF-2019-040 1711.03301
arche	$ ilde{g} ilde{g}, ilde{g} ightarrow q ilde{q} ilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i> 2-6 jets	$E_T^{\rm miss}$	139	ĝ ĝ	For	bidden	2.35 1.15-1.95	$m(\tilde{x}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{x}_{1}^{0})=1000 \text{ GeV}$	ATLAS-CONF-2019-040 ATLAS-CONF-2019-040
e Se	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_{1}^{0}$ $\tilde{a}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_{1}^{0}$	1 e, μ 2-6 jets $ee, \mu\mu$ 2 jets	Emiss	139 36.1	ĝ ĝ		12	2.2	$m(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{\chi}) - m(\tilde{\chi}_{1}^{0}) = 50 \text{ GeV}$	ATLAS-CONF-2020-047 1805-11381
clusiv	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	$0 e, \mu$ 7-11 jets SS e, μ 6 jets	E_T^{miss}	139 139	o iš		1.15	1.97	$m(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{g})-m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$	ATLAS-CONF-2020-002 1909.08457
ц.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$	$\begin{array}{ccc} \text{0-1} \ e,\mu & \text{3} \ b \\ \text{SS} \ e,\mu & \text{6 jets} \end{array}$	$E_T^{\rm miss}$	79.8 139	250 750		1.25	2.25	$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}$ $m(\tilde{g})-m(\tilde{\chi}_{1}^{0}) = 300 \text{ GeV}$	ATLAS-CONF-2018-041 1909.08457
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$	Multiple Multiple		36.1 139	$egin{array}{ccc} egin{array}{ccc} egin{array}{cccc} egin{array}{ccc} egin{array}{ccc} egin{arr$	Forbidden 0.74	0.9	$m(\tilde{\chi}_1^0)=200G$	$m(\tilde{\chi}_{1}^{0})=300 \text{ GeV}, BR(b\tilde{\chi}_{1}^{0})=1$ eV, $m(\tilde{\chi}_{1}^{-})=300 \text{ GeV}, BR(t\tilde{\chi}_{1}^{\pm})=1$	1708.09266, 1711.03301 1909.08457
sk no	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 e,μ 6 b 2 τ 2 b	E_T^{miss} E_T^{miss}	139 139	b ₁ Farbidden b ₁	0.13-0.8	0.23-1.3	5 Δm(\tilde{k}_{2}^{0} Δm	$(\tilde{\chi}_{1}^{0})=130 \text{ GeV}, m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}$ $(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0})=130 \text{ GeV}, m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$	1908.03122 ATLAS-CONF-2020-031
lucti	$\tilde{\iota}_1 \tilde{\iota}_1, \tilde{\iota}_1 \rightarrow \iota \tilde{\chi}_1^0$	$0-1 \ e, \mu \ge 1 \ jet$	E_T^{miss}	139	ĩ ₁		1.25		m(ℓ ₁ ⁰)=1 GeV	ATLAS-CONF-2020-003, 2004.14060
rod	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	$1 e, \mu$ $3 jets/1 b$	E_T^{miss}	139		0.44-0.59	1.10		m($\tilde{\chi}_{1}^{0}$)=400 GeV	ATLAS-CONF-2019-017
den oct p	$I_1I_1, I_1 \rightarrow T_1 \partial V, T_1 \rightarrow T G$ $\tilde{I}_1 \tilde{I}_1, \tilde{I}_1 \rightarrow V_1 \partial V, \tilde{I}_1 \rightarrow T G$	$0e_{\mu}$ 2c	$E_{\tilde{T}}$ F^{miss}	36.1		0.8	5		$m(r_1)=800 \text{ GeV}$	1803.10178
3 rd dire	$\eta \eta, \eta \rightarrow \alpha \gamma, \alpha \rightarrow \alpha \gamma$	0 e, µ mono-jet	E_T^{miss}	36.1	\vec{t}_1 \vec{t}_1	0.46 0.43			$m(\tilde{t}_1, \hat{c}) - m(\tilde{\chi}_1^0) = 50 \text{ GeV}$ $m(\tilde{t}_1, \hat{c}) - m(\tilde{\chi}_1^0) = 5 \text{ GeV}$	1805.01649 1711.03301
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$	1-2 e, μ 1-4 b	E_T^{miss}	139	\tilde{t}_1		0.067-1.18		$m(\tilde{\chi}_2^0)$ =500 GeV	SUSY-2018-09
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 <i>c</i> ,µ 1 <i>b</i>	$E_T^{\rm miss}$	139	ĩ ₂	Forbidden 0.8	6	$m(\tilde{\chi}_1^0)=$	=360 GeV, m (\tilde{t}_1) -m $(\tilde{\chi}_1^0)$ = 40 GeV	SUSY-2018-09
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ	$\begin{array}{ll} 3 \ e, \mu \\ e e, \mu \mu \end{array} \geq 1 \ \mathrm{jet} \end{array}$	E_{T}^{miss} E_{T}^{miss}	139 139	$ \begin{array}{c} \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{0}^{0} \\ \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{2}^{0} \end{array} 0.205 \end{array} $	0.64			$m(\tilde{\chi}_1^0)=0$ $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$	ATLAS-CONF-2020-015 1911.12606
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW	2 e, µ	E_T^{miss}	139	\tilde{X}_1^{\pm}	0.42			$m(\tilde{\chi}_{1}^{0})=0$	1908.08215
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	$0-1 e, \mu \qquad 2 b/2 \gamma$	E_T^{miss}	139	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^{\nu}$ Forbidden	0.74			$m(\tilde{\chi}_1^0)=70 \text{ GeV}$	2004.10894, 1909.09226
EV life	$\chi_1 \chi_1$ via $\ell_L / \bar{\nu}$	2 e, µ 2 τ	E _T Fmiss	139	<i>X</i> ₁ <i>τ</i> [τ, τρ.] 0.16.0.3	0 12-0 39	1.0		$m(\ell, \bar{v})=0.5(m(\ell_1)+m(\ell_1))$ $m(\bar{v}^0)=0$	1908.08215
0	$\tilde{l}_{1} P \tilde{l}_{1} P, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}$	2 e, µ 0 jets	E_{τ}^{miss}	139	Ĩ	0.7			$m(\tilde{\chi}_{1}^{0})=0$	1908.08215
		$ee, \mu\mu \ge 1$ jet	$E_T^{\rm fniss}$	139	ī 0.256				$m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$	1911.12606
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	$\begin{array}{ll} 0 \ e, \mu & \geq 3 \ b \\ 4 \ e, \mu & 0 \ {\rm jets} \end{array}$	E_T^{miss} E_T^{miss}	36.1 139	<i>Н</i> 0.13-0.23 <i>Н</i>	0.29-0. 0.55	88		$BR(\tilde{\chi}_1^0 \rightarrow h\tilde{G})=1$ $BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$	1806.04030 ATLAS-CONF-2020-040
-lived icles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk 1 jet	$E_T^{ m miss}$	36.1	$\begin{array}{cc} ilde{\chi}_{\perp}^{\pm} & \\ ilde{\chi}_{1}^{\pm} & 0.15 \end{array}$	0.46			Pure Wina Pure higgsina	1712.02118 ATL-PHYS-PUB-2017-019
art	Stable g R-hadron	Multiple		36.1	- ĝ			2.0		1902.01636,1808.04095
7 0	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	Multiple		36.1	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$		_	2.05 2.4	m(\tilde{k}_{1}^{0})=100 GeV	1710.04901,1808.04095
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0$, $\tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 e, µ		139	$ \tilde{\chi}_1^{\mp}/\tilde{\chi}_1^0 = [BR(Z\tau)=1, BR(Ze)=1]$	0.625	1.05		Pure Wind	ATLAS-CONF-2020-009
	LFV $pp \rightarrow \tilde{\nu}_{\tau} + X, \tilde{\nu}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	eμ.eτ.μτ	romiss	3.2	$\tilde{\nu}_{\tau}$			1.9	$\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$	1607.08079
	$\chi_1^*\chi_1^*/\chi_2^* \to WW/Z\ell\ell\ell\ell\nu\nu$	4 e, µ 0 jets 4-5 large-Ri	E _T	36.1	$X_1^-/X_2^- [A_{433} \neq 0, A_{12k} \neq 0]$ $\tilde{\sigma} = [m(\tilde{v}^0) - 200 \text{ GeV} + 1100 \text{ GeV})]$	0.82	1.33	10	m($\mathcal{K}_1)$ =100 GeV	1804.03568
>	$gg, g \rightarrow qqx_1, x_1 \rightarrow qqq$	Multiple	013	36.1	$\tilde{g} = [\lambda''_{112} = 2e-4, 2e-5]$		1.05	2.0	$m(\tilde{\chi}_1^0)=200$ GeV, bino-like	ATLAS-CONF-2018-003
de la	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$	Multiple		36.1	$\tilde{t} = [\lambda''_{323} = 2e-4, 1e-2]$	0.55	1.05		$m(\tilde{\chi}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003
	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$	$\geq 4b$		139	ĩ	Forbidden	0.95		$m(\tilde{\chi}_1^{\pm})$ =500 GeV	ATLAS-CONF-2020-016
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$	2 jets + 2	b	36.7	$\tilde{t}_1 [qq, bs]$	0.42 0.61				1710.07171
	$t_1 t_1, t_1 \rightarrow q \ell$	2e,μ 2b 1μ DV		36.1 136	t_1 t_1 [1e-10< χ_{11} <1e-8, 3e-10< λ'_{11}	<3e-9]	0.4-1	.45	BR($t_1 \rightarrow be/b\mu$)>20% BR($\tilde{t_1} \rightarrow q\mu$)=100%, cos θ_t =1	1710.05544 2003.11956
				~ ~			_			
Only	a selection of the available ma	ss limits on new state	es or	1	0 ⁻¹		1		Mass scale [TeV]	-

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

ATLAS	Preliminary
	$\sqrt{s} = 13 \text{ TeV}$

Mass scale [TeV]

Electroweak Precision Tests

 $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SI}}$

• The most general method of indirectly searching for heavy new physics is SMEFT.

$$M + \sum_{n=5}^{\infty} \sum_{i} \frac{c_i^{(n)}}{\Lambda^{n-4}} \mathcal{O}_i^{(n)}$$

Assuming CP conservation and MFV, about 20 operators are relevant for EWPTs.

34

A Tale of Two Bar Plots

