CKM determination from W decays

8th FCC Physics Workshop - CERN - 15/01/2025

David Marzocca (INFN Trieste)

Based on: D.M., Manuel Szewc and Michele Tammaro JHEP 11 (2024) 017 [2405.08880]

CKM matrix elements

CKM matrix elements

Fundamental SM parameters:
 CKM elements enter in all quark flavour-changing transitions and set the size of CP violation effects.

Precise knowledge is **crucial** to derive the **strongest possible sensitivity** on **new physics from rare meson decays** and meson mixing observables.

$$B \to K^{(*)} v v$$
 V_{cb} is particular $B^+ \to K^+ \nu \bar{\nu}$ $(5.06 \pm 0.14 \pm 0.28) \times 10^{-6}$ Error but $B^0 \to K_S \nu \bar{\nu}$ $(2.05 \pm 0.07 \pm 0.12) \times 10^{-6}$ Euror butBecirevic et al. 2301.06990Becirevic et al. 2301.06990Euror but

Main theory uncertainties due to:

- Hadronic form factors (Lattice QCD)
- CKM matrix elements: mostly |V_{cb}|

$$V_{ts} = -V_{cb} \left[1 - \frac{\lambda^2}{2} (1 - 2\bar{\rho} - 2i\bar{\eta}) + \mathcal{O}(\lambda^4) \right]$$

Buras et al. 1409.4557

3.7%

 γ

Measuring V_{cb} from meson decays

V_{cb} is currently measured from **tree-level semi-leptonic B decays**, either exclusive $B \to D^{(*)} \ell v$ or inclusive $b \to c$ transitions, $B \to X_c \ell v$.

At present the $|V_{cb}|$ extraction from **inclusive vs. exclusive** decays are in **tension**.

Independently on this tension, the extraction of V_{cb} from semileptonic B decays is **already limited by systematics**: Belle-II detector performance.

A more direct measurement $\mathcal{L}_{\text{gauge}} > -\frac{g}{5} \left(\mathcal{W}_{\mu}^{\dagger} \, \bar{u}_{\iota}^{\dagger} \, \mathcal{V}_{\alpha\beta} \, \mathcal{Y}^{\prime} \, d_{\iota}^{\beta} + h.c. \right)$ b-jet $\mathcal{B}(W^- \to \bar{u}_i d_j) \approx \frac{1}{2} |V_{ij}|^2 \mathcal{B}(W^- \to \text{hadrons})$ V_{cb} $\mathcal{B}(W^- \rightarrow \text{hadrons}) = (67.41 \pm 0.27)\%$

- Extracting **CKM elements directly from on-shell W decays** could provide:
- A completely **independent measurement** of a crucial input for flavour physics.

A measurement **independent from Lattice QCD** inputs: a possible benchmark for LQCD?

3) A way to improve the precision beyond the one from semileptonic B decays. Quantify?

The scope

Assuming ~10⁸ W pairs and a "*perfect jet flavour tagger*", the statistical precision achievable in each CKM ME would be:

$W^- \rightarrow$	$\bar{u}d$	$\bar{u}s$	$\bar{u}b$	$\bar{c}d$	$\bar{c}s$	$\bar{c}b$
BR	31.8%	1.7%	4.5×10^{-6}	1.7%	31.7%	5.9×10^{-4}
$N_{ m ev}$	64×10^6	3.4×10^{6}	900	$3.4 imes 10^6$	63×10^6	118×10^3
$\delta_{V_{ij}}^{ h}$	0.0063~%	0.027 %	1.7 %	0.027 %	0.0063 %	0.15 %

see [2401.07564]

- V_{cb} and V_{cs} : good statistical prospect, good tagging
- Vub: poor statistics, poor tagging (no hope)
- Others: good statistics, poor tagging

0.0063% 0.15%

good tagging nope)

We focus on $V_{\textit{cb}}$ and $V_{\textit{cs}}$

	Current	
$ V_{c} $	Current	
* 13	(PDG)	
$ V_{cs} $	0.975 ± 0.006	(0.6%)
$ V_{cb} $	$(40.8 \pm 1.4) \times 10^{-3}$	(3.4%)

Jet Flavour Tagging

Exquisite jet flavour tagging performance at FCCee

[Bedeschi, Gouskos, Selvaggi 2202.03285 + updates 1, 2]

$\epsilon^{q_{\beta}}$: probability of tagging a β -jet as a q-jet **FCC (IDEA) working point**

	b	S	с	u	d	g
ϵ^b_eta	0.8	0.0001	0.003	0.0005	0.0005	0.007
ϵ^c_{eta}	0.02	0.008	0.8	0.01	0.01	0.01
ϵ^s_{β}	0.01	0.9	0.1	0.3	0.3	0.2

Similar performance at CEPC [2205.08553, 2310.03440]

Jet Flavour Tagging

Exquisite jet flavour tagging performance at FCCee

[Bedeschi, Gouskos, Selvaggi 2202.03285 + updates 1, 2]

$\epsilon^{q_{\beta}}$: probability of tagging a β -jet as a q-jet **FCC (IDEA) working point**

	b	S	с	u	d	g
ϵ^b_eta	0.8	0.0001	0.003	0.0005	0.0005	0.007
ϵ^c_{eta}	0.02	0.008	0.8	0.01	0.01	0.01
ϵ^s_{β}	0.01	0.9	0.1	0.3	0.3	0.2

Similar performance at CEPC [2205.08553, 2310.03440]

Precise calibration thanks to ~ 10^{12} Z decays (R_b method [hep-ex/9810002]) allows O(0.1%) precision in the jet tagging efficiencies.

The impact of the **extrapolation of these jet tagging from the Z-pole run up to the WW threshold** should be carefully assessed.

First estimates

Using BDT-based **ILD jet-tagging performances** as a reference

[Charles et al 2006.04824]

Eff b-jet tagger Eff c-jet tagger

b	С	uds
25%		
10%	50%	2%

 $\delta V_{cb} \simeq 0.4\%$

7

First estimates

Using BDT-based **ILD jet-tagging** performances as a reference

[Charles et al 2006.04824]

Eff b-jet tagger Eff c-jet tagger

Revised using with optimized GNN-based IDEA performance data

Eff. \	b	С	uds
<i>b</i> -tag	0.87		
c-tag	1	0.65	0.0001

ୁଙ୍କୁ 10⁻² ଧ୍ୟ 10⁻³ 10⁻⁴ 10⁻⁵ 10⁻⁵

S. Monteil [7th FCCee Physics Workshop 2024 slides]

b	С	uds
25%		
10%	50%	2%

 $\delta V_{cb} \simeq 0.4\%$

relative precision on Vcb

$\delta V_{cb} \simeq 0.15\%$

First estimates

Using BDT-based **ILD jet-tagging performances** as a reference

[Charles et al 2006.04824]

Eff b-jet tagger Eff c-jet tagger

Revised using with optimized GNN-based IDEA performance data

Eff. \	b	С	uds
<i>b</i> -tag	0.87		
c-tag	1	0.65	0.0001

S. Monteil [7th FCCee Physics Workshop 2024 slides]

Questions: What are the **prospects for V_{cs}?** How do they depend on **systematic uncertainties?** [DM, Szewc, Tammaro 2405.08880]

b	С	uds
25%		
10%	50%	2%

 $\delta V_{cb} \simeq 0.4\%$

relative precision on Vcb

Strategy $|V_{ij}|^2$ $\sum_{l=u,c; m=d,s,b} |V_{lm}|^2$

Each $W \rightarrow u_i d_j$ depends on CKM elements as (normalised with hadronic Br to reduce QCD uncertainties)

 $rac{\mathcal{B}_{ij}}{\mathcal{B}_{ ext{had}}}pprox$ –

Including acceptance, the expected fraction of events per channel is:

 $F_{ij} = \mathcal{A}_W \times \mathcal{B}_{ij}$

Strategy $|V_{ij}|^2$ $\sim \frac{1}{\sum_{l=u,c:m=d,s,b} |V_{lm}|^2}$

Each $W \rightarrow u_i d_j$ depends on CKM elements as (normalised with hadronic Br to reduce QCD uncertainties)

 $\mathcal{B}_{ij} pprox$ $\mathcal{B}_{ ext{had}}$

We study $WW \rightarrow 4$ -jets: $e^+e^- \to W^+W^- \to \left(u_i \bar{d}_j\right) \left(d_k \bar{u}_z\right)$

 $m_{AB} \approx m_W$

we neglect the mis-pairings in this analysis

Including acceptance, the expected fraction of events per channel is:

 $F_{ij} = \mathcal{A}_W \times \mathcal{B}_{ij}$

Strategy $|V_{ij}|^2$

Each $W \rightarrow u_i d_j$ depends on CKM elements as (normalised with hadronic Br to reduce QCD uncertainties)

 $\overline{\mathcal{B}_{\text{had}}} \sim \frac{|V_{lm}|^2}{\sum_{l=u.c:\ m=d.s.b} |V_{lm}|^2}$

We study $WW \rightarrow 4$ -jets: $e^+e^- \to W^+W^- \to (u_i\bar{d}_i)(d_k\bar{u}_z)$

 $m_{AB} \approx m_W$

we neglect the mis-pairings in this analysis

Including acceptance, the expected fraction of events per channel is:

$F_{ij} = \mathcal{A}_W \times \mathcal{B}_{ij}$

Example for V_{cb} :

For each pair of jets $W \rightarrow j^A j^B$ in an event we count the number of jets tagged as b and c:

 $(n_b, n_c) = \{(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (1, 1)\}$

Each of this "bin" has a **probability** $P_W(n_b, n_c)$. it depends on F_{ij} and tagging efficiencies.

Strategy $|V_{ij}|^2$

Each $W \rightarrow u_i d_j$ depends on CKM elements as (normalised with hadronic Br to reduce QCD uncertainties)

 $\mathcal{B}_{ ext{had}}$ $\sum_{l=\mu,c}$

We study $WW \rightarrow 4$ -jets: $e^+e^- \to W^+W^- \to (u_i\bar{d}_i)(d_k\bar{u}_z)$

 $m_{AB} \approx m_W$

we neglect the mis-pairings in this analysis

Including acceptance, the expected fraction of events per channel is:

$$r; m=d,s,b |V_{lm}|^2$$

 $F_{ij} = \mathcal{A}_W \times \mathcal{B}_{ij}$

Example for V_{cb} :

For each pair of jets $W \rightarrow j^A j^B$ in an event we count the number of jets tagged as b and c:

 $(n_b, n_c) = \{(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (1, 1)\}$

Each of this "bin" has a **probability** $P_W(n_b, n_c)$. it depends on F_{ij} and tagging efficiencies.

Each event has 2 pairs, so we have two sets of bins:

$$B_{bc;1} \equiv (n_{b;1}, n_{c;1}) \qquad B_{bc;2} \equiv (n_{b;2}, n_{c;2})$$

The final **number of expected events** in each counting bin is:

$$N_{B_{bc;1},B_{bc;2}} = N_{WW} P_W(B_{bc;1}) P_W(B_{bc;2})$$

[DM, Szewc, Tammaro <u>2405.08880]</u>

Systematics

The final **number of expected events** in each counting bin is:

 $N_{B_{bc;1},B_{bc;2}} = N_{WW} P_W(B_{bc;1}) P_W(B_{bc;2})$

Systematics

$$N_{B_{bc;1},B_{bc;2}} = N_W$$

The probability $P_W(n_b, n_c)$ depends on F_{ij} and the tagging efficiencies

$$\begin{split} P_{W}(1,1) &= \sum_{u_{i}=u,c} \sum_{d_{j}=d,s,b} (\epsilon_{u_{i}}^{c} \epsilon_{d_{j}}^{b} + \epsilon_{u_{i}}^{b} \epsilon_{d_{j}}^{c}) \mathcal{B}_{ij} \mathcal{A}_{W} ,\\ P_{W}(0,2) &= \sum_{u_{i}=u,c} \sum_{d_{j}=d,s,b} \epsilon_{u_{i}}^{c} \epsilon_{d_{j}}^{c} \mathcal{B}_{ij} \mathcal{A}_{W} ,\\ P_{W}(2,0) &= \sum_{u_{i}=u,c} \sum_{d_{j}=d,s,b} \epsilon_{u_{i}}^{b} \epsilon_{d_{j}}^{b} \mathcal{B}_{ij} \mathcal{A}_{W} ,\\ P_{W}(0,1) &= \sum_{u_{i}=u,c} \sum_{d_{j}=d,s,b} (\epsilon_{u_{i}}^{c} (1 - \epsilon_{d_{j}}^{c} - \epsilon_{d_{j}}^{b}) + \epsilon_{d_{j}}^{c} (1 - \epsilon_{u_{i}}^{c} - \epsilon_{u_{i}}^{b})) \mathcal{B}_{ij} \mathcal{A}_{W} ,\\ P_{W}(1,0) &= \sum_{u_{i}=u,c} \sum_{d_{j}=d,s,b} (\epsilon_{u_{i}}^{b} (1 - \epsilon_{d_{j}}^{c} - \epsilon_{d_{j}}^{b}) + \epsilon_{d_{j}}^{b} (1 - \epsilon_{u_{i}}^{c} - \epsilon_{u_{i}}^{b})) \mathcal{B}_{ij} \mathcal{A}_{W} ,\\ P_{W}(0,0) &= \sum_{u_{i}=u,c} \sum_{d_{j}=d,s,b} (1 - \epsilon_{u_{i}}^{c} - \epsilon_{u_{i}}^{b}) (1 - \epsilon_{d_{j}}^{c} - \epsilon_{d_{j}}^{b}) \mathcal{B}_{ij} \mathcal{A}_{W} ,\\ \end{split}$$

[DM, Szewc, Tammaro <u>2405.08880]</u>

The final **number of expected events** in each counting bin is:

 $_{WW} P_W(B_{bc;1}) P_W(B_{bc;2})$

Systematics

$$N_{B_{bc;1},B_{bc;2}} = N_W$$

The probability $P_W(n_b, n_c)$ depends on F_{ij} and the tagging efficiencies

$$\begin{split} P_{W}(1,1) &= \sum_{u_{i}=u,c} \sum_{d_{j}=d,s,b} (\epsilon_{u_{i}}^{c} \epsilon_{d_{j}}^{b} + \epsilon_{u_{i}}^{b} \epsilon_{d_{j}}^{c}) \mathcal{B}_{ij} \mathcal{A}_{W} ,\\ P_{W}(0,2) &= \sum_{u_{i}=u,c} \sum_{d_{j}=d,s,b} \epsilon_{u_{i}}^{c} \epsilon_{d_{j}}^{c} \mathcal{B}_{ij} \mathcal{A}_{W} ,\\ P_{W}(2,0) &= \sum_{u_{i}=u,c} \sum_{d_{j}=d,s,b} \epsilon_{u_{i}}^{b} \epsilon_{d_{j}}^{b} \mathcal{B}_{ij} \mathcal{A}_{W} ,\\ P_{W}(0,1) &= \sum_{u_{i}=u,c} \sum_{d_{j}=d,s,b} (\epsilon_{u_{i}}^{c} (1 - \epsilon_{d_{j}}^{c} - \epsilon_{d_{j}}^{b}) + \epsilon_{d_{j}}^{c} (1 - \epsilon_{u_{i}}^{c} - \epsilon_{u_{i}}^{b})) \mathcal{B}_{ij} \mathcal{A}_{W} ,\\ P_{W}(1,0) &= \sum_{u_{i}=u,c} \sum_{d_{j}=d,s,b} (\epsilon_{u_{i}}^{b} (1 - \epsilon_{d_{j}}^{c} - \epsilon_{d_{j}}^{b}) + \epsilon_{d_{j}}^{b} (1 - \epsilon_{u_{i}}^{c} - \epsilon_{u_{i}}^{b})) \mathcal{B}_{ij} \mathcal{A}_{W} ,\\ P_{W}(0,0) &= \sum_{u_{i}=u,c} \sum_{d_{j}=d,s,b} (1 - \epsilon_{u_{i}}^{c} - \epsilon_{u_{i}}^{b}) (1 - \epsilon_{d_{j}}^{c} - \epsilon_{d_{j}}^{b}) \mathcal{B}_{ij} \mathcal{A}_{W} ,\\ \end{split}$$

The final **number of expected events** in each counting bin is:

 $_{WW} P_W(B_{bc;1}) P_W(B_{bc;2})$

Tagging efficiencies 8^qB

To each we assign a **relative uncertainty** (equal for all)

$$\delta_{\epsilon} \equiv \delta \epsilon / \epsilon$$

9

The main background to the signal is due to the jet mistagging from WW > 4j events. This is included in the mistag rates.

The main background to the signal is due to the jet mistagging from WW > 4j events. This is included in the mistag rates.

Another 4-jet background can arise from **Drell-Yan**: $e^+e^- \rightarrow q\bar{q} + 2j$

We simulate it with: $p_T^j > 5$ GeV, $\eta_j < 2$, $\Delta R_{jj} > 0.1$ + select events which have

$m_{j1j2} \& m_{j3j4} \simeq m_W$

 (m_{12}, m_{34}) within 5 GeV of m_W

$\sigma_{4j-m_W}pprox 159~{ m fb}$ of which

The main background to the signal is due to the jet mistagging from WW > 4j events. This is included in the mistag rates.

$m_{j1j2} \& m_{j3j4} \simeq m_W$ We simulate it with: $p_T^j > 5$ GeV, $\eta_j < 2$, $\Delta R_{jj} > 0.1$ + select events which have (m_{12}, m_{34}) within 5 GeV of m_W $\sigma_{2q2g} \approx 158 \text{ fb} \rightarrow \text{dominant category}$ $\sigma_{4q} \approx 0.95 \text{ fb} \rightarrow \text{negligible}$

 $\sigma_{4j-m_W}pprox 159~{
m fb}$ of which

The flavour decomposition of the two pairs of jets is the following (2q2g category):

$(\bar{u}u)$ $(\bar{c}c)$ $(\bar{d}g)$ $(\bar{s}g)$ $(\bar{b}g)$ $(\bar{u}g)$ $(\bar{c}g)$ Very small mistag ra	$(\bar{c}g)$	$(\bar{u}g)$	$(\bar{b}g)$	$(\bar{s}g)$	$(\bar{d}g)$	$(\bar{c}c)$	$(\bar{u}u)$	$(\bar{b}b)$	$(\bar{s}s)$	$(\bar{d}d)$	W_1
(gg) (gg) (dg) (sg) (bg) (ug) (cg) into a b- or c-jet: 0.0	(cg)	(ug)	(bg)	(sg)	(dg)	(gg)	(gg)	(gg)	(gg)	(gg)	W_2
20 22 15 15 8.7 19 22	22	19	8.7	15	15	22	20	6.9	14	14	σ [fb]
2.4 2.7 1.8 1.8 1.1 2.3 1.6 We checked that the	1.6	2.3	1.1	1.8	1.8	2.7	2.4	0.83	1.7	1.7	$N_{ m ev}$ $[10^6]$
CKM extraction is no											

The main background to the signal is due to the jet mistagging from WW > 4j events. This is included in the mistag rates.

$m_{j1j2} \& m_{j3j4} \simeq m_W$

We simulate it with: $p_T^j > 5$ GeV, $\eta_j < 2$, $\Delta R_{jj} > 0.1$ + select events which have (m_{12}, m_{34}) within 5 GeV of m_W

$\sigma_{2q2g} \approx 158 \text{ fb} \rightarrow \text{dominant category}$ $\sigma_{4q} \approx 0.95 \text{ fb} \rightarrow \text{negligible}$

SM corrections

QCD and EW corrections mostly cancel in this ratio: small kinematical effects, could be easily taken into account.

Hadronic width can be computed at N³LO, used to extract precise value of $\alpha_s(m_W)$. [e.g. d'Entrerria, Srebre 1603.06501 + d'Entrerria, Jacobsen 2005.04545]

11

SM corrections

Color reconnection can affect the hadron distribution in the WW → 4j process.

Its understanding is crucial for a precise m_W measurement: modelled in showering algorithms.

Gustafson, Pettersson, Zerwas '88, Sjostrand and Khoze '93, Christiansen and Sjöstrand [1506.09085]

We assume any related systematic uncertainties can be "described" by the systematic uncertainties associated to the jet tagging efficiencies.

Open question: what is the impact of this in CKM extraction?

QCD and EW corrections mostly cancel in this ratio: small kinematical effects, could be easily taken into account.

Hadronic width can be computed at N³LO, used to extract precise value of $\alpha_s(m_W)$. [e.g. d'Entrerria, Srebre 1603.06501 + d'Entrerria, Jacobsen 2005.04545]

Results

Fixing the efficiencies working point at the FCC (IDEA) one.

Considerable improvement in V_{cb} and V_{cs} extraction compared to present (and future) measurements are expected, for any systematic uncertainty below the 1% level.

	Parameter	Value
	N_{WW}	3×10^8
	$\operatorname{Br}(W \to \operatorname{had})$	0.6741
,	${ m Br}(W o \ell u)$	0.3278
	\mathcal{A}_W	0.9

The precision on V_{cb} saturates at per-mille level of systematic uncertainties, due to limited statistics.

V_{cs} instead is never statistically limited for any reasonable value of systematic uncertainties.

12

Results

Considerable improvement in V_{cb} and V_{cs} extraction compared to present (and future) measurements are expected, for any systematic uncertainty below the 1% level.

Dependence on the working point

- Statistics only
- 1% Systematics FWP
- 0.1% Systematics
- V_{cb}:

0.85

- ~ linear dependence on ε^{b}_{b} and ε^{c}_{c} for small syst., less for 1% syst.
 - Important a good rejection of light jets from **b-tagger**
 - Looser rejection for the c-tagger acceptable

(since if the b is tagged correctly, the only alternative decay is $W \rightarrow ub$, which is very rare)

- With systematics, the **sensitivity is driven by the** V_{cs}: s-tagger (ε^{s}_{s} and ε^{s}_{udg}).
 - c-tagging performance less critical.

Semileptonic channel

The semileptonic channel pays the price of **smaller leptonic W branching ratio**. On the other hand, it is free from Drell-Yan background and color reconnection effects.

[Liang, Feng-Li, Zhu, Schen, Ruan 2406.01675]

$\delta V_{cb} \simeq \pm 0.34\%$ (stat.) $\pm 0.2 - 1.5\%$ (syst)

The largest source of uncertainty is determined as the one associated to flavour tagging (and mistagging rates) of b/c jets.

A recent paper performed a full detector simulation to obtain the extraction of $|V_{cb}|$ from semileptonic events.

 $\epsilon^{b}_{b} \sim 91\%$, $\epsilon^{b}_{c} \sim 4\%$, $\epsilon^{b}_{sdu} \sim 0.5\%$

Conclusions and Outlook

Conclusions:

- future e⁺e⁻ colliders
- uncertainties): one order of magnitude improvement.
- (both from Higgs/EW factories and from legacy flavour factories).

Open questions:

- Review of the state-of-the-art Flavour Tagging (FT) algorithms (detector requirements?)
- FT calibration methods and related systematics.
- Full simulation study for the WW \rightarrow 4j channel.

- V_{cb} and V_{cs} measurement from W decays should clearly be an important goal in flavour physics at

Extra

Measuring V_{cs} from meson decays

 V_{cs} is currently measured from tree-level leptonic D_s or semi-leptonic D decays. Experiments: Belle, CLEO-c, BABAR, BESIII

 $f_{D_s} = (249.9 \pm 0.5) \,\mathrm{MeV}$

$$\int_{+}^{NK} (o) : Lattice GLCA$$

$$\begin{cases} |V_{cs}| = 0,972 \pm 0,0 \\ mostly form factor unc \end{cases}$$

 $f_{\pm}^{DK}(0) = 0.7385 \pm 0.0044$

PDG average:

 $|V_{cs}| = 0.975 \pm 0.006$

Statistical procedure

Let us define the probability that each hadronic W decay goes in the bin (n_b, n_c) :

$$P_W(n_b, n_c) \equiv \sum_f p(n_b, n_c)$$

$$\begin{split} P_{W}(1,1) &= \sum_{u_{i}=u,c} \sum_{d_{j}=d,s,b} (\epsilon_{u_{i}}^{c} \epsilon_{d_{j}}^{b} + \epsilon_{u_{i}}^{b} \epsilon_{d_{j}}^{c}) \mathcal{B}_{ij} \mathcal{A}_{W} ,\\ P_{W}(0,2) &= \sum_{u_{i}=u,c} \sum_{d_{j}=d,s,b} \epsilon_{u_{i}}^{c} \epsilon_{d_{j}}^{c} \mathcal{B}_{ij} \mathcal{A}_{W} ,\\ P_{W}(2,0) &= \sum_{u_{i}=u,c} \sum_{d_{j}=d,s,b} \epsilon_{u_{i}}^{b} \epsilon_{d_{j}}^{b} \mathcal{B}_{ij} \mathcal{A}_{W} ,\\ P_{W}(0,1) &= \sum_{u_{i}=u,c} \sum_{d_{j}=d,s,b} (\epsilon_{u_{i}}^{c} (1 - \epsilon_{d_{j}}^{c} - \epsilon_{d_{j}}^{b}) + \epsilon_{d_{j}}^{c} (1 - \epsilon_{u_{i}}^{c} - \epsilon_{u_{i}}^{b})) \mathcal{B}_{ij} \mathcal{A}_{W} ,\\ P_{W}(1,0) &= \sum_{u_{i}=u,c} \sum_{d_{j}=d,s,b} (\epsilon_{u_{i}}^{b} (1 - \epsilon_{d_{j}}^{c} - \epsilon_{d_{j}}^{b}) + \epsilon_{d_{j}}^{b} (1 - \epsilon_{u_{i}}^{c} - \epsilon_{u_{i}}^{b})) \mathcal{B}_{ij} \mathcal{A}_{W} ,\\ P_{W}(0,0) &= \sum_{u_{i}=u,c} \sum_{d_{j}=d,s,b} (1 - \epsilon_{u_{i}}^{c} - \epsilon_{u_{i}}^{b}) (1 - \epsilon_{d_{j}}^{c} - \epsilon_{d_{j}}^{b}) \mathcal{B}_{ij} \mathcal{A}_{W} , \end{split}$$

 $(f, \nu)F_f(\mu, \nu)$

Probability that the final state f goes in the bin (n_b, n_c)

 $|f,\nu)F_f(\mu,\nu)|$

 $N_{B_{bc;1},B_{bc;2}} = N_{WW} P_W(B_{bc;1}) P_W(B_{bc;2})$

The likelihood is then given by (Gaussian approx):

$$-2\ln \mathcal{L} = \sum_{B_{bc;1}, B_{bc;2}} \frac{\left(N_{B_{bc;1}, B_{bc;2}} - N_{B_{bc;1}, B_{bc;2}}^A\right)^2}{N_{B_{bc;1}, B_{bc;2}}} + \chi_{\text{tag}}^2$$
$$\chi_{\text{tag}}^2 = \sum_{q=b,c} \sum_{\beta=b, s, c, u, d, g} \left(\frac{\epsilon_{\beta}^q - \hat{\epsilon}_{\beta}^q}{\delta_{\epsilon} \hat{\epsilon}_{\beta}^q}\right)^2$$

19