Overview of Quark Flavour Opportunities at FCC-ee

Joe Davighi, CERN TH

15th January, 8th FCC Physics Workshop, CERN

Outline of Talk

- 1. Some BSM motivation for precision flavour measurements
- 2. Why FCC-ee is best of both worlds when it comes to flavour
- 3. Survey of FCC-ee quark flavour studies that have been done
- 4. What else can/should be done?

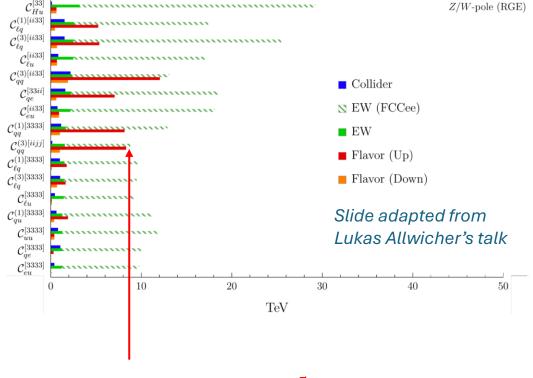
w.i.p with Marzia Bordone and Claudia Cornella

BSM physics is needed to solve some big problems:

like the hierarchy problem and the flavour puzzle

At zeroth order:

- Electroweak measurements probe solutions to the hierarchy problem
- Flavour measurements probe solutions to the flavour puzzle


But this is too simple!

• EW precision probes almost generic BSM extensions b/c you cannot turn off loops!

See talks by Matthew McCullough and Lukas Allwicher

• Flavour precision also probes generic BSM extensions b/c you cannot turn off flavour violation!

 $\mathcal{O}(10)$ TeV constraints for four-fermion operators (3rd ge. quarks)

These operators do not affect Z pole at tree, but you cannot switch off RGE

These operators are not flavour-violating, but you cannot switch off the CKM!

Flavour reach – with $U(2)^5$ protection

Q: Why is flavour so sensitive to BSM?

Example: FCNCs

A: Because many flavour-changing processes are **rare** – due to accidents peculiar to the SM

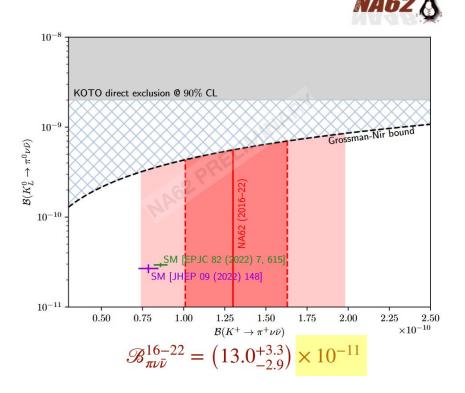
c.f. proton decay probes GUT scale

c.f. m_W/m_Z due to custodial

BSM particles won't necessarily respect these accidental features of the SM

E.g. a flavour non-universal Z': even if no direct flavour violation, get tree-level FCNCs suppressed only by CKM

To maximise sensitivity to BSM in these rare processes, we need very precise measurements!


Flavour physics = an extremely rich experimental program...

- The flavour frontier is pushed back by many kinds of measurement at many specialised experiments [contrast to EW precision]

... and an ongoing journey

- Despite astonishing precision across many measurements, still many channels which cannot be probed by LHC + flavour factories

These should be targets for future colliders

J Swallow for NA62, CERN Seminar, 9/24

1. Why is FCC-ee so good for flavour?

See Monteil, Wilkinson, 2106.01259

FCC-ee is a Next Generation Flavour Factory

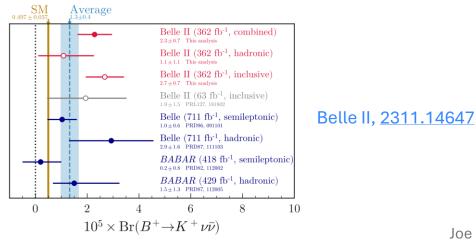
The low-energy flavour prospects at FCC-ee come largely from the **tera-Z** run:

Of the $O(10^{12})$ Z-bosons produced at tera-Z:

- 15% decay to $b\overline{b}$
- 12% decay to cc
- 3% decay to $\tau^+\tau^-$

It's not just a numbers game: FCC-ee **combines advantages** of **B factories** and **LHC**

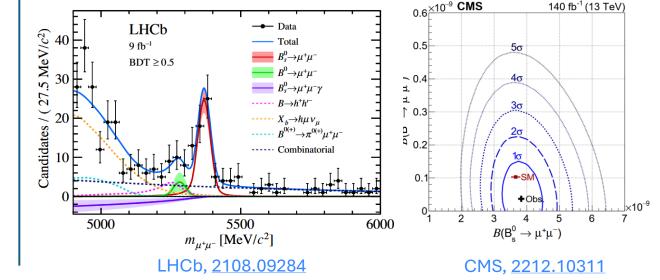
Flavour physics at $e^+e^- vs pp$ colliders


e^+e^- (Belle II and FCC-ee)

1. Low background

- 2. No trigger losses
- 3. 4π acceptance, missing energy can be measured
- 4. Initial energy knowledge

Showcase: allows much better measurements involving invisible neutrinos (hence also taus) than at e.g. LHCb


E.g. recent observation of $B^+ \to K^+ \nu \bar{\nu}$

pp (HL-LHC and FCC-hh)

- 1. Huge statistics
- 2. Produce full range of hadrons
- 3. Many highly **boosted** *B* hadrons (mostly forward)

Showcase: enough stats to access ultra rare decays (especially involving muons e.g. $B_s \rightarrow \mu^+ \mu^-$) with high precision

FCC-ee vs. Belle II

Key advantages of FCC-ee

• Statistics: tera- $Z \rightarrow 15x$ (at least...) more $b\overline{b}$ pairs than Belle II

[opens possibility for ultra-rare decay measurements in a clean environment]

- Energy: $\sqrt{s} = m_Z \approx 91 \text{ GeV vs } m(\Upsilon(4S)) \approx 11 \text{ GeV}$
 - FCC-ee can produce **full range** of hadron species inc. B_s , Λ_b etc
 - FCC-ee produces **boosted** mesons aids reconstruction

Particle production (10^9)	B^0/\overline{B}^0	B^+/B^-	B_s^0/\overline{B}_s^0	B_c^+/\overline{B}_c^-	$\Lambda_b/\overline{\Lambda}_b$	$c\overline{c}$	$\tau^+\tau^-$
Belle II	27.5	27.5	n/a	n/a	n/a	65	45
FCC-ee	620	620	150	4	130	600	170

Belle II advantage: known initial *B* energy (although distribution well modelled at FCC-ee)

Replicates the main advantages of *pp* over current B factories

So, FCC-ee combines the USPs (for flavour) of B factories & LHC

New opportunities

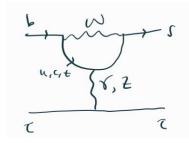
Doing this not only allows comparable/better measurements at FCC-ee in the familiar channels suited to Belle II and LHC

> It also opens some completely new frontiers i.e. processes we have never measured before

Complementarity

Belle II and LHC each retain *some* advantage over FCC-ee (initial energy *vs* huge stats respectively), which means there will remain complementarity between all three

[Example: HL-LHC likely ends up with best precision on $B_s \rightarrow \mu^+ \mu^-$]

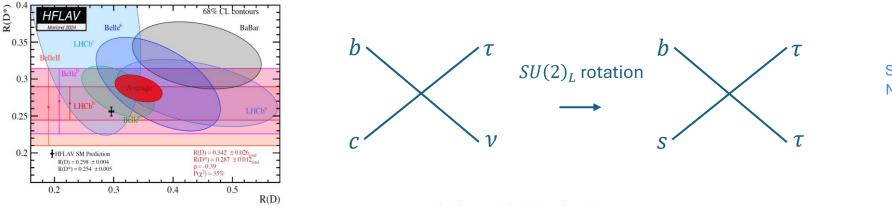

2. What FCC-ee flavour studies have been done?

Survey of studies

The following flagship channels have received dedicated studies, with detector simulation (IDEA baseline) and background modelling:

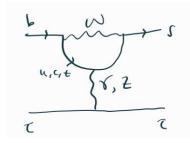
- 1. $B \to K^* \tau \tau$ new frontier!
- 2. $B_{c/u} \rightarrow \tau \nu$ new frontier!
- 3. $b \rightarrow s \bar{\nu} \nu$ pushing back the Belle II frontier: 10% to 1% precision

New frontiers at FCC-ee: **bstt**



Current upper bound $BR(B \to K^*\tau^+\tau^-) \le 3 \times 10^{-3}$ [BABAR] is $3 \div 4$ orders of magnitude away from SM prediction! Hopeless to observe with current experiments (modulo huge BSM contribution)

- LHC: problem is two neutrinos (contrast to $B \to K^* \mu^+ \mu^-$ which is "routinely" measured in LHCb)
- B factories: not enough stats to approach SM rate


New physics in this channel is relatively unconstrained – could exceed SM by orders of magnitude

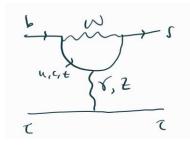
• Predicted to be large in many models e.g. addressing $R_{D^{(*)}}$ anomalies

See e.g. Buttazzo, Greljo, Isidori, Marzocca, <u>1706.07808</u> + ...

New frontiers at FCC-ee: **bstt**

Current upper bound $BR(B \to K^*\tau^+\tau^-) \le 3 \times 10^{-3}$ [BABAR] is $3 \div 4$ orders of magnitude away from SM prediction! Hopeless to observe with current experiments (modulo huge BSM contribution)

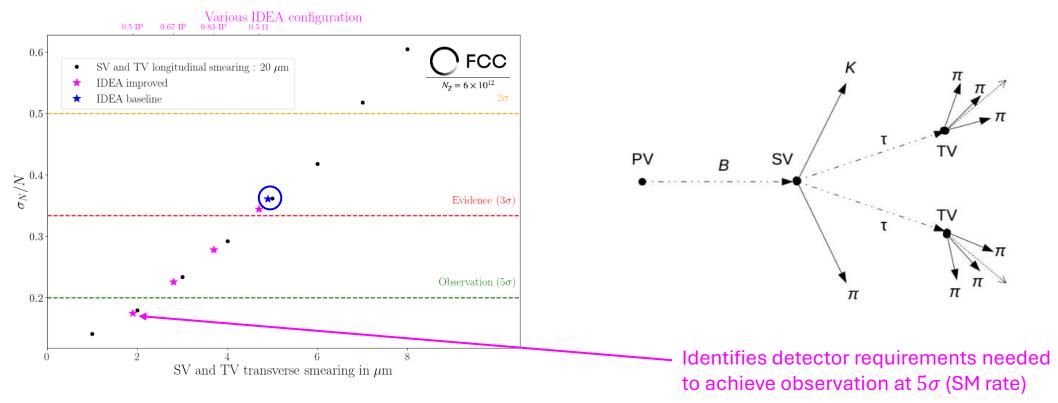
- LHC: problem is two neutrinos (contrast to $B \to K^* \mu^+ \mu^-$ which is "routinely" measured in LHCb)
- B factories: not enough stats to approach SM rate

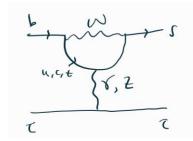

FCC-ee naïvely overcomes both hurdles

Proof of concept in $B \to K^* \tau^+ \tau^-$ at FCC-ee early study Kamenik, Monteil, Semkiv, Vale Silva <u>1705.11106</u>

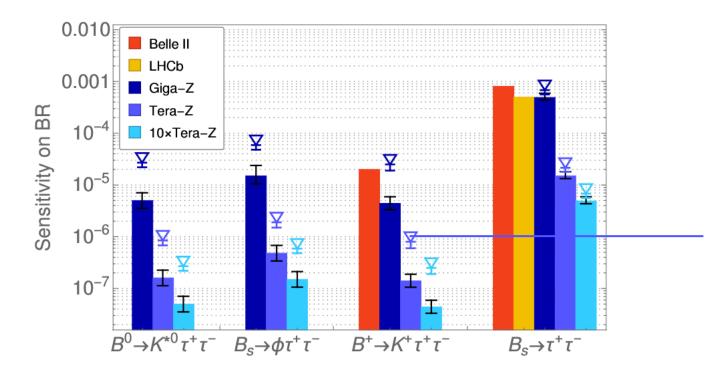
- **1.** High boost of the *B* (+ vertexing) allows reconstruction of 3-prong hadronic $\tau \rightarrow \pi \pi \pi \nu$ decay
- 2. Good **missing energy resolution** (neutrinos in each τ decay)
- 3. High **statistics** of tera-*Z*

Together is enough to make a measurement of $B \rightarrow K^* \tau^+ \tau^-$ at SM rate a viable target!


New frontiers at FCC-ee: **bstt**


Updated study – see <u>slides of Tristan Miralles</u> from FCC Physics Workshop 2024, Annecy

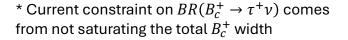
Still uses only fully hadronic τ decay; $K^* \to K\pi$; detector simulation using IDEA baseline design


Vertex resolutions is a key parameter affecting BR sensitivity [$\epsilon_{vertex} = 0.8$ in this study]

New frontiers at FCC-ee: **bsττ**

Not just $B \to K^* \tau \tau$, but other $bs \tau \tau$ channels have been studied in Li, Liu, <u>2012.00665</u>

More conservative projection includes **finite tracker resolution**


New frontiers at FCC-ee: *bc***\tau\nu** in $B_c^+ \to \tau^+\nu$

Note these are tree-level decays in SM – not "rare" $BR(B_c^+ \to \tau^+ \nu) = 2 \times 10^{-2}$ in SM; $BR(B^+ \to \tau^+ \nu) = 0.9 \times 10^{-4}$ Nonetheless $B_c^+ \to \tau^+ \nu$ measurement is practically impossible at current experiments:*

- LHC: tau vertex plus an extra neutrino, no initial knowledge of the B momentum, no 2nd vertex, and huge background...
- Belle II: operates below B_c threshold $[B \rightarrow \tau \nu \text{ measured at B factories with 20\% precision}]$

New physics in this channel directly correlated to anomalies in $R_{D^{(*)}}$

New frontiers at FCC-ee: *b* $c\tau\nu$ in $B_c^+ \rightarrow \tau^+\nu$

Note these are tree-level decays in SM – not "rare" $BR(B_c^+ \to \tau^+ \nu) = 2 \times 10^{-2} \text{ in SM}; BR(B^+ \to \tau^+ \nu) = 0.9 \times 10^{-4}$ Nonetheless $B_c^+ \to \tau^+ \nu$ measurement is practically impossible at current experiments:*

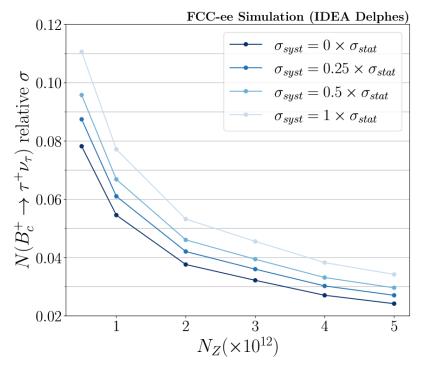
- LHC: tau vertex plus an extra neutrino, no initial knowledge of the B momentum, no 2nd vertex, and huge background...
- Belle II: operates below B_c threshold $[B \rightarrow \tau \nu \text{ measured at B factories with 20\% precision}]$

Again, the combination of boosted B_c mesons, high statistics (albeit significantly fewer than B and B_s mesons), and clean hermitic environment, make $B_c^+ \rightarrow \tau^+ \nu$ an opportunity unique to FCC-ee

FCC-ee studies:

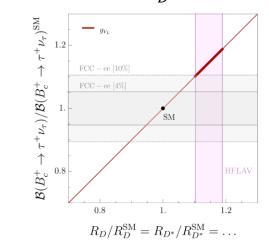
- $B_c^+ \rightarrow \tau^+ \nu$ Amhis, Hartmann, Helsens, Hill, Sumensari, <u>2105.13330</u>
- $B_{u,c}^+ \rightarrow \tau^+ \nu$ Zuo, Fedele, Helsens, Hill, Iguro, Klute, <u>2305.02998</u>

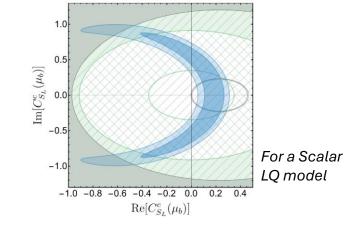
See also CEPC study:


• $B_c^+ \rightarrow \tau^+ \nu$ Zheng, Cao, Yu, Wang, Prell et al, <u>2007.08234</u>

* Current constraint on $BR(B_c^+ \rightarrow \tau^+ \nu)$ comes from not saturating the total B_c^+ width

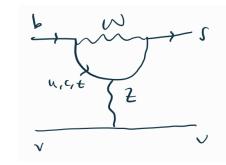
New frontiers at FCC-ee: *bc***\tau\nu** in $B_c^+ \to \tau^+\nu$

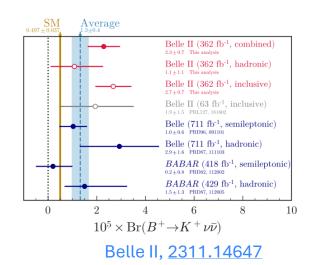

Amhis, Hartmann, Helsens, Hill, Sumensari, 2105.13330; Zuo, Fedele, Helsens, Hill, Iguro, Klute, 2305.02998


• Hadronic 3-prong tau decay (as for $B \to K^* \tau^+ \tau^-$). Reconstruction of tau vertex (thus τ^+ flight distance) helps bkg rejection (done by training BDTs)

2105.13330: relative precision ~3% on $B_c^+ \rightarrow \tau^+ \nu$ 2305.02998: ~ 1 ÷ 2% precision on $B_c^+ \rightarrow \tau^+ \nu$ and $B^+ \rightarrow \tau^+ \nu$

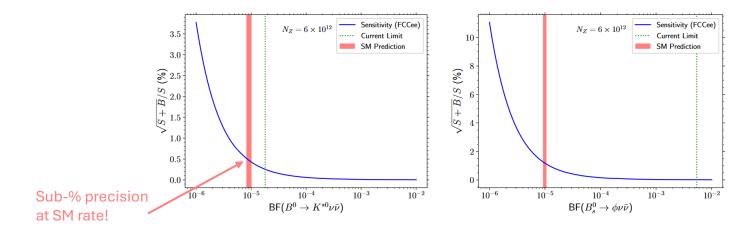
The corresponding sensitivity to NP requires a reliable estimate of the theory precision to estimate; but it is comparable to the current uncertainties in fits to $R_{D^{(*)}}$ tensions

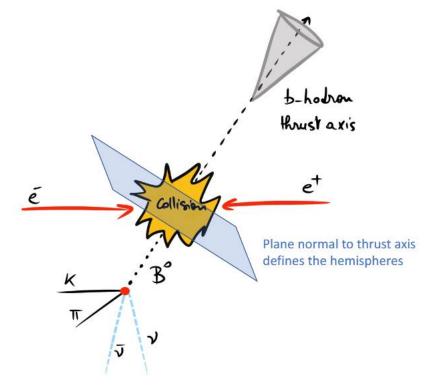



Pushing back the frontier: $bsv\overline{v}$

- LHC: missing energy prevents meaningful measurements
- Belle II: currently a big opportunity
 - $B \to K^* \nu \bar{\nu}$ observation not out yet (still only an upper limit)
 - Belle II only observed $B^+ \to K^+ \nu \bar{\nu}$ already because of a statistical over-fluctuation
 - If SM rate, best case scenario ($\int L = 50 \text{ ab}^{-1}$) at Belle II is O(10%) precision

Theoretically $bsv\bar{v}$ rare FCNC decays are cleaner than bsll; **very sensitive to BSM** Again, predicted to be large in BSM models addressing $R_{D^{(*)}}$ anomalies

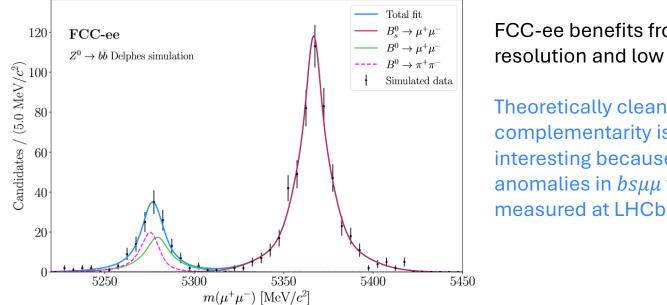

Pushing back the frontier: $bsv\overline{v}$ at 1%


FCC-ee study: Amhis, Kenzie, Reboud, Wiederhold, 2309.11353

Like in Belle II, events characterized by large missing energy on signal side

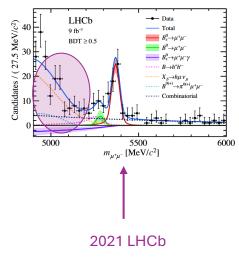
Upshot: go from 10% precision (Belle II) to 1% precision (FCC-ee)

Decay mode	$\mathcal{B}/ \lambda_t ^2 [10^{-3}]$	$\mathcal{B}\left[10^{-6}\right]$	-
$B^0 \to K^0_{\rm S} \nu \overline{\nu}$	1.33 ± 0.04	2.02 ± 0.12	
$B^0 \to K^{*0} \nu \overline{\nu}$	5.13 ± 0.51	7.93 ± 0.89	Prompt $K^* \to K\pi$
$B^0_s \to \phi \nu \overline{\nu}$	6.31 ± 0.67	9.74 ± 1.15	Prompt $\phi \to K^+K^-$
$\Lambda^0_b\to\Lambda\nu\overline{\nu}$	5.55 ± 0.56	8.57 ± 0.97	



Complementarity to LHC: $B_{d/s} \rightarrow \mu^+ \mu^-$

This is a challenge at FCC-ee!


- Tera Z: $1.5 \times 10^{11} B_s$ mesons; $BR(B_s \rightarrow \mu\mu) = 3 \times 10^{-9}$;
- expect around 500 $B_s \rightarrow \mu\mu$ events across whole distribution [n.b. $B_s \rightarrow \mu\mu$ could not be done at giga Z!]
- Precise measurement still realistic thanks to clean environment; complements LHC measurements •

From Monteil, Wilkinson, 2106.01259; study by Donal Hill

FCC-ee benefits from excellent mass resolution and low backgrounds Theoretically clean; the complementarity is especially interesting because of related anomalies in $bs\mu\mu$ transitions

Reminder:

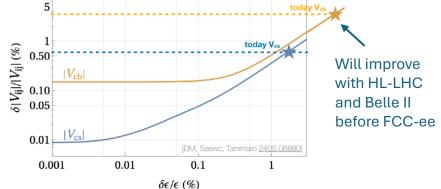
What more can be done?

- More serious studies of these flagship decays (e.g. improving background modelling)
- Detailed studies of new processes (I'm sure many are under way...)

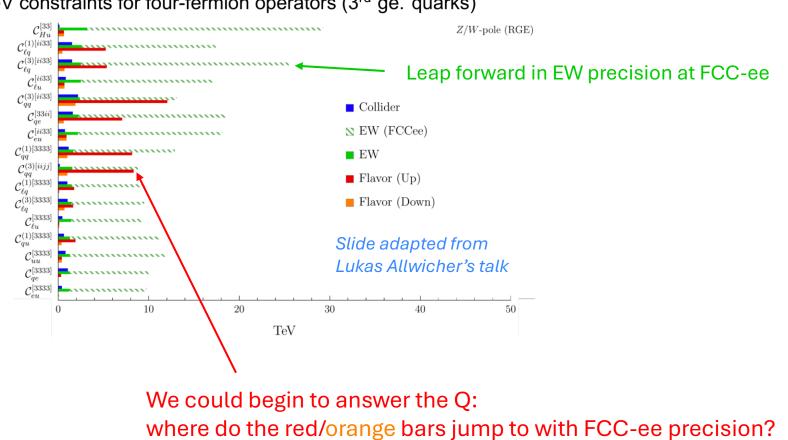
Our goal:

with Marzia Bordone and Claudia Cornella (+ thanks already due to Stephane Monteil)

- Perform a crude extrapolation of the results from this handful of detailed studies to a much larger wishlist of processes, using conservative estimates of unknown efficiencies / background modelling
- In doing so, we plan to provide a somewhat global picture for FCC-ee flavour opportunities

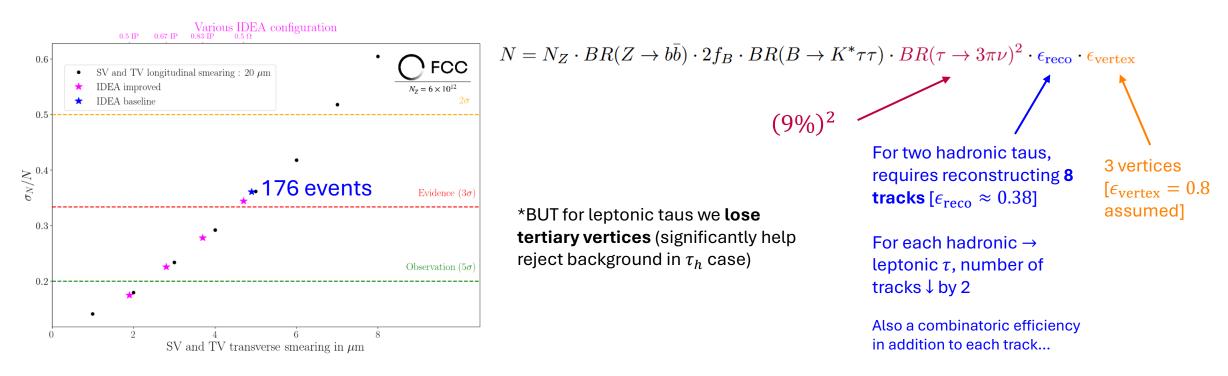

What more can be done?

- More serious studies of these flagship decays (e.g. improving background modelling)
- Detailed studies of new processes (I'm sure many are under way...)


Our goal:

with Marzia Bordone and Claudia Cornella (+ thanks already due to Stephane Monteil)

- Perform a crude extrapolation of the results from this handful of detailed studies to a much larger wishlist of processes, using conservative estimates of unknown efficiencies / background modelling
- In doing so, we plan to provide a somewhat global picture for FCC-ee flavour opportunities
- We also hope this will be helpful for understanding the BSM reach of flavour @ FCC-ee, and complementarity with EW precision*
 - This also requires some 'guestimates' of **SM theory** improvements
 - + CKM elements are a key input: big improvements at FCC-ee


See David Marzocca's talk

$\mathcal{O}(10)$ TeV constraints for four-fermion operators (3rd ge. quarks)

Wishlist

1. Extend the $bs\tau\tau$ and $bc\tau\nu$ to include **leptonic tau decays**

Rough idea: reasonable to estimate that including say $\tau_h \tau_l$ channel could e.g. double number of signal events, and help us reach 5σ observation of $B \to K^* \tau \tau$

Wishlist

- 1. Extend the $bs\tau\tau$ and $bc\tau\nu$ to include leptonic tau decays
- 2. $B \to K^{(*)}\tau\tau \Longrightarrow B \to K^{(*)}\mu\mu$ estimate [preliminary: ~80k in central bin], and other $b \to s\mu\mu$? Muons constructed perfectly, but lose vertices
- 3. Rare decays with electrons e.g. $B \rightarrow K^{(*)}ee$;
 - a) Can presumably make big gains w.r.t. LHCb, for processes that are too rare for Belle II. A new frontier?
- 4. To complement $B_c \rightarrow \tau \nu$ study: estimate $B \rightarrow D^* \tau \nu$?
 - a) Likewise for $B \rightarrow \tau \nu$, estimate $B \rightarrow \pi \tau \nu$
- 5. The above $b \rightarrow c$ processes but with $\tau \rightarrow \mu$ (could provide competitive V_{cb} measurement)
- 6. B_s mixing study at FCC-ee is so far limited to V_{cb} improvement

Charles, Descotes-Genon, Ligeti, Monteil, Papucci, Trabelsi, Vale Silva, <u>2006.04824</u>

- 7. LFUV R-ratios like in LHCb? Theoretically clean, this time without experimental electron challenges
- 8. LFUV R-ratios involving taus?

9. ...

Conclusions

- Precision flavour program offers crucial and unique exploration of generic BSM, to high scales
- LHC experiments and B factories (+ kaon factories) are highly complementary: together they make astonishing measurements in a huge range of rare processes
- FCC-ee combines best of both, which also opens up totally new opportunities:
 - 1. $B \rightarrow K^* \tau \tau$
 - 2. $B_{c/u} \rightarrow \tau v$
 - 3. $b \rightarrow s \bar{\nu} \nu$ to % precision
- In progress: FCC-ee can surely also improve and/or provide complementary measurements besides these flagship processes (e.g. measurements involving muons). Need wider range of estimates, even if crude
 - > Get a global picture for the flavour leap forward at FCC-ee, and implications for BSM
- An important question: dedicated flavour experiment at FCC-ee? Now that 4 experiments seems settled.
- I focussed on B physics. Excellent opportunities for charm (not much explored) and tau also.