Results and plans from the FCC-hh physics performance WG

Birgit Stapf, with co-coordinators Angela Taliercio and Sarah Williams

16.01.2025 | FCC Physics Workshop | CERN

Introduction: FCC-hh running scenarios

FCC-hh: Hadron collider phase of the FCC integrated programme

CDR baseline plan was 30 ab⁻¹ of pp-collision data @ 100 TeV

Main limitations: dipole magnets, synchrotron radiation and extreme levels of pile-up → alternative FCC-hh running scenarios

	F12 scenarios*	F14	F17	F20	HL-LHC
CM energy / TeV	72	84	102	120	14
Dipole field / T	12	14	17	20	8.3
lnit. pile-up	580 - 2820	590	732	141	135
Lumi/year / fb ⁻¹	950 - 2000	920	920	370	240

<u>F. Zimmermann</u>

*F12 includes 3 different scenarios for high, low lumi & low PU

Introduction: The physics & performance working group

FCC-hh ESPP2025 Physics &

Performance group started:

Common platform for all ongoing FCC-hh projection studies

September 2024

Introduction: The physics & performance working group

FCC-hh ESPP2025 Physics &

Performance group started:

Common platform for all ongoing FCC-hh projection studies

Main goals for FCC-hh ESPP summary report:

- Key Higgs benchmarks for other energies
- Ultimate precision on Higgs self-coupling
- Solidify assumptions on detector performance
- Unexplored channels/new physics cases

September 2024

Introduction: The physics & performance working group

FCC-hh ESPP2025 Physics &

Performance group started:

Common platform for all ongoing FCC-hh projection studies

Main goals for FCC-hh ESPP summary report:

- Key Higgs benchmarks for other energies
- Ultimate precision on Higgs self-coupling
- Solidify assumptions on detector performance
- Unexplored channels/new physics cases

FCC-hh projection study workflow

FCC-hh projection study workflow

Efficiencies & resolutions as functions of p_T and η

- Official FCC-hh scenarios
- Rely on common software stack: <u>key4hep</u>
- Note: No direct pile-up overlay, assume LHC levels in the parametrizations

Overview of topics

Covered in this presentation

Update of 2019 study: Reoptimized and/or at alternate energies

Completely new study

- Idea or initial exploration

🛊 - Ongoing work

- Advanced ongoing work

Performance studies

- 🔆 Flavour tagging with transformer architecture
- 💿 💡 Full simulation tracking with timing e.g. ACTS
- 🛛 💡 Pile-up impact studies

....

Overview of topics

Covered in this presentation

Update of 2019 study: Reoptimized and/or at alternate energies

Completely new study

- Idea or initial exploration

ݙ - Ongoing work

- Advanced ongoing work

Performance studies

- 🔶 Flavour tagging with transformer architecture
- Full simulation tracking with timing e.g. ACTS
- 🛛 💡 Pile-up impact studies

Physics studies

- Higgs couplings in rare decays

🔆 Ratio H(µµ)/H(4µ)

- Top-Yukawa coupling
 - \mathbf{Q} Ratio $\overline{tt}H(\overline{bb})/\overline{tt}Z(\overline{bb})$

🚽 💡 τ̄tH(γγ) channel

Higgs self-coupling

🛨 δbγγ channel

🔆 bb**tt** channel

 $rac{1}{2} bbll + E_T^{miss}$ channel

🛛 🔆 HVV CPV couplings

- 💡 Higgs width measurement
- Differential cross-sections as input to global fits

. . . .

Jet Flavour Tagging with transformer architecture

Wei Sheng Lai, Nikita Pond, Tim Scanlon, Sebastien Rettie, Sam Van Stroud

Motivation for the study:

- Current FCC-hh Delphes scenarios assume flavour tagging efficiencies (at least as) good as latest CMS performance with ParticleNET
 - Can we actually reach this?
- CDR included initial studies into flavour tagging efficiencies with the FCC-hh tracker layout relying on calculation of the track covariance matrix

Jet Flavour Tagging with transformer architecture

Wei Sheng Lai, Nikita Pond, Tim Scanlon, Sebastien Rettie, Sam Van Stroud

- Performance study of transformer model (GN2), with Delphes <u>TrackCovariance</u> <u>module</u> implementing tracker layout
 - Validated against FCC-ee & CDR

:ÉRN

Jet Flavour Tagging with transformer architecture

Wei Sheng Lai, Nikita Pond, Tim Scanlon, Sebastien Rettie, Sam Van Stroud

- Performance study of transformer model (GN2), with Delphes <u>TrackCovariance</u> <u>module</u> implementing tracker layout
 - Validated against FCC-ee & CDR
- Find b-tagging efficiencies > 95% (70%) with 1% mis-tagging at rates in moderate (high) pT range, maintained up to $|\eta| < 5$
- Next steps: Further study impact of pile-up? Connect with tracking with timing studies?

Higgs couplings precision measurements

Granada report

Significant precision improvements in couplings measurements in rare decay modes that remain (statistically) limited at FCC-ee/HL-LHC, or are not directly accessible at FCC-ee

Higgs couplings: Analysis strategy

<u>CERN-ACC-2018-0045</u>

Systematic uncertainties will dominate

Higgs couplings: Analysis strategy

<u>CERN-ACC-2018-0045</u>

Systematic uncertainties will dominate But: Large statistics even at high p_{τ} ...

Higgs couplings: Analysis strategy

<u>CERN-ACC-2018-0045</u>

Systematic uncertainties will dominate But: Large statistics even at high p_T ...

... where experimental systematic uncertainties on efficiencies are smaller

Higgs couplings: Previous results

Michelangelo Mangano at last year's FCC physics workshop

- Additionally exploit ratio with $BR(H \rightarrow ZZ^* \rightarrow 4l)$
 - Further cancel systematics
 - Absolute coupling with FCC-ee $BR(H \rightarrow ZZ^*)$ result
- Rescaling statistical uncertainties to other energies:
 - With ± 20 TeV : σ_{prod} ± 30%

	Precision in %			
Coupling	80 TeV	100 TeV	120 TeV	
$\boldsymbol{\delta} g_{H \boldsymbol{\gamma} \boldsymbol{\gamma}}^{\prime} g_{H \boldsymbol{\gamma} \boldsymbol{\gamma}}$	0.4	0.4	0.4	
δ g _{Hμμ} / g _{Hμμ}	0.7	0.65	0.6	
$\boldsymbol{\delta} g_{HZ\gamma}^{\prime} g_{HZ\gamma}$	1.0	0.9	0.8	

BR ratio precision

Higgs couplings: Status of $H(\mu\mu)$

 Reproduced signal strength precision scan @ 100 TeV, with statistical uncertainties only

- Cut & count in 1 GeV bin around m_{H}
- Backgrounds only $\mu\mu$ continuum

Next steps

- Validation of new samples & first results at other energies (72, 80, 120 TeV) ongoing
- Integrate systematic uncertainties
- Determine ratio with $H(4\mu)$
- Move to template fit of m
- Missing backgrounds?

Higgs self-coupling precision measurements

<u>Granada report</u>

Large dataset & increased cross-section at baseline CDR FCC-hh offers %-level κ_{λ} precision

Higgs self-coupling precision measurements

<u>CERN-TH-2020-052</u>

CERN

Higgs self-coupling precision measurements

CERN-TH-2020-052

Re-optimized $\overline{b}b\gamma\gamma$ analysis strategy

Angela Taliercio, Paola Mastrapasqua, Birgit Stapf at FCC-hh ESPP meeting

DNN categorization (example)

Re-optimized $\overline{b}b\gamma\gamma$ analysis strategy

Angela Taliercio, Paola Mastrapasqua, Birgit Stapf at FCC-hh ESPP meeting

DNN categorization (example)

Bin in $m_{_{bb}}$

Most sensitive region (=highest signal/background ratio) near the Higgs mass

Re-optimized $\overline{b}b\gamma\gamma$ analysis strategy

Angela Taliercio, Paola Mastrapasqua, Birgit Stapf at FCC-hh ESPP meeting

DNN categorization (example)

Bin in m_{bh}

 Most sensitive region
 (=highest signal/background ratio) near the Higgs mass

116 118 120 122 124 126 128

130 132 134 m_{yy} [GeV

Updated $\overline{b}b\gamma\gamma$ analysis results

Angela Taliercio, Paola Mastrapasqua, Birgit Stapf at FCC-hh ESPP meeting

	m_{bb} resolution			
	Nominal	10 GeV	5 GeV	3 GeV
$oldsymbol{\delta\kappa}_{\lambda}$ (68% CL - stat. only)	3.2%	2.5%	2.0%	1.8%

Updated $\overline{b}b\gamma\gamma$ analysis results

Angela Taliercio, Paola Mastrapasqua, Birgit Stapf at FCC-hh ESPP meeting

	m_{bb} resolution			
	Nominal	10 GeV	5 GeV	3 GeV
$oldsymbol{\delta\kappa}_{\lambda}$ (68% CL - stat. only)	3.2%	2.5%	2.0%	1.8%

Next step for $\overline{bb}\gamma\gamma$ analysis: Separating triangle vs box diagrams

Bastien Voirin, Claude Charlot, [Angela Taliercio, Paola Mastrapasqua, Birgit Stapf]

- Dominant mode of gluon-gluon fusion Higgs pair production has two (interfering) diagrams
- Only the triangle diagram contribution contains a Higgs-self coupling vertex
- Ongoing work to apply Bastien Voirin's BDT classifier which separates the triangle from the box contribution based on the Higgs' kinematics to the bbyy analysis to further boost sensitivity

$bb \tau \tau$ analysis with advanced ML techniques @ 100 TeV

Sam Valentine, Lennox Wood, Monica D'Onofrio, Jordy Degens, Carl Gwilliam, Cristiano Sebastiani

*bbr***r** analysis with advanced ML techniques @ 100 TeV

Sam Valentine, Lennox Wood, Monica D'Onofrio, Jordy Degens, Carl Gwilliam, Cristiano Sebastiani

Input distributions (example)

 Analysis of bt t_{lep} t_{had} and bt t_{had} t_{had} signal events
 Backgrounds from top and single Higgs production, as well QCD+EW continuum (Drell-Yan Z+jets)

$\overline{bb} \tau \tau$ analysis with advanced ML techniques @ 100 TeV

Sam Valentine, Lennox Wood, Monica D'Onofrio, Jordy Degens, Carl Gwilliam, Cristiano Sebastiani

GNN performance Model Output Distribution on Validation Dataset 10¹ 10¹

- Analysis of bb \$\mathcal{t}_{lep}\$\mathcal{t}_{had}\$ and \$\begin{subset}{bb\$\mathcal{t}_{had}\$ signal events\$
 Backgrounds from top and single Higgs production, as well QCD+EW continuum (Drell-Yan Z+jets)\$
- Best GNN performance with high-level variables of \overline{bb} and $\tau\tau$ systems (inv. masses, radial distances, E_T^{miss} centrality)
- Small benefit with constraints from di-Higgs system

$bb \tau \tau$ analysis with advanced ML techniques @ 100 TeV

Sam Valentine, Lennox Wood, Monica D'Onofrio, Jordy Degens, Carl Gwilliam, Cristiano Sebastiani

Input distributions (example)

- Analysis of δbτ_{lep}τ_{had} and δbτ_{had}τ_{had} signal events
 Backgrounds from top and single Higgs production, as well QCD+EW continuum (Drell-Yan Z+jets)
- Best GNN performance with high-level variables of \overline{bb} and $\tau\tau$ systems (inv. masses, radial distances, E_T^{miss} centrality)
- Small benefit with constraints from di-Higgs system

 First estimate of significance binned in GNN output shows improvement of ~ factor 2 over previous BDT analysis

Outlook: Towards global fits with updated FCC-hh projections

Juan Rojo, Simone Tentori, Jorge de Blas

κ-framework fits for alternativeFCC-hh running scenarios &combinations of Future Colliders

- Required experimental inputs: updated incl. Higgs signal strength measurements @ 72, 80 (84)*, 100, 120 TeV

,**ГО**"

Outlook: Towards global fits with updated FCC-hh projections

Juan Rojo, Simone Tentori, Jorge de Blas

κ-framework fits for alternativeFCC-hh running scenarios &combinations of Future Colliders

FCC-hh interpretations in global SMEFT fits with inclusive signal strengths Ratio of Uncertainties to SMEFiT3.0 Baseline, $O(\Lambda^{-2})$, Marginalised $c_{Qq}^{1,8}$ $c_{\varphi D}$ $c_{\varphi \Box}$ c_{WWW} $c_{Oa}^{1,1}$ 0.1 C_{tZ} c⁽³⁾ SMEFIT LHC + HL - LHC + FCC - ee

- Required experimental inputs: updated incl. Higgs signal strength measurements @ 72, 80 (84)*, 100, 120 TeV
- Required theory input: Repetition of HL-LHC EFT calculations for the FCC-hh energy scenarios

"CO"

NLO"

Outlook: Towards global fits with updated FCC-hh projections

Juan Rojo, Simone Tentori, Jorge de Blas

κ-framework fits for alternativeFCC-hh running scenarios &combinations of Future Colliders

FCC-hh interpretations in global SMEFT fits with inclusive signal strengths

"ONNTO"

"O"

NLO"

Ultimate goal: Global SMEFT fit with differential distributions from FCC-hh

- Required experimental inputs: differential distributions for Higgs, top, diboson, Drell-Yan etc. observables, and matching to UV models, with systematic uncertainties
- Required theory input: Repetition of HL-LHC EFT calculations for the FCC-hh energy scenarios

Summary

Covered in this presentation

Update of 2019 study: Reoptimized and/or at alternate energies

Completely new study

- Idea or initial exploration

 - Ongoing work

- Advanced ongoing work

Performance studies

- 🔶 Flavour tagging with transformer architecture
- 🛛 💡 Full simulation tracking with timing e.g. ACTS
- 🛛 💡 Pile-up impact studies

Physics studies

- Higgs couplings in rare decays

🔆 Ratio H(µµ)/H(4µ)

- Top-Yukawa coupling
 - \mathbf{Q} Ratio $\overline{tt}H(\overline{bb})/\overline{tt}Z(\overline{bb})$
 - 💡 *ī*tH(γγ) channel
 - Higgs self-coupling
 - 🛨 δbγγ channel
 - 🔆 🕸 🕸 🕸 🕸
 - $rac{1}{2}$ $bbll+E_{T}^{miss}$ channel
- 🛛 🔆 HVV CPV couplings
 - 💡 Higgs width measurement
- Differential cross-sections as input to global fits

. . . .

-

....

Organisation, resources & links

If you are interested, join our FCC-hh physics & performance group!

- Monthly (zoom) meetings Thursday's at 4PM (CERN time)
 - Might increase frequency, call for presentations next week
 - Mailing lists: *fcc-ped-hh-physicsperformance-espp25*
 - Mattermost: FCC-hh ESPP 2025 P&P discussion
- Also monthly general meetings for FCC-hh ESPP2025 input
 - Mailing list: *fcc-ped-hh-espp25*

Resources available on common software frameworks and tools

- FCC-hh P&P working group documentation page
- <u>Hands-on tutorial during first WG meeting</u> (recording available!)
- Database of FCC-hh samples

Organisation, resources & links

Further references on physics studies:

- <u>Studies on sensitivity to HVV CPV couplings using CP-odd observables and ML</u> <u>techniques at FCC-hh (and FCC-ee)</u>
- <u>Higgs Self Couplings Measurements at Future proton-proton Colliders: a Snowmass</u> <u>White Paper</u>

References from 2019 studies (results are still relevant!)

- <u>Heavy resonances at energy-frontier hadron colliders</u>
- Measuring the Higgs self-coupling via Higgs-pair production at a 100 TeV p-p collider
- <u>hh + Jet production at 100 TeV</u>
- Higgs Boson studies at future particle colliders
- Higgs measurements at FCC-hh

FCC-hh baseline detector concept

FCC-hh baseline detector concept

SM physics more forward at 100 TeV

- \rightarrow Precision spectroscopy and calorimetry up to $|\eta| < 4$
- \rightarrow Tracking and calorimetry up to $|\eta|$ < 6

Delphes scenarios for FCC-hh

- Two current Delphes scenarios for FCC-hh:
 - <u>Scenario I</u>: Idealistic scenario for ultimate precision
 - <u>Scenario II</u>: Baseline scenario based on FCC-hh

detector concept from CDR

	Relative <i>p</i> resolution		Efficiency	
	Scenario I	Scenario II	Scenario I	Scenario II
Electrons	0.4-1%	0.8-3%	76-95%	72-90%
Muons	0.5-3%	1-6%	90-99%	88-97%
Medium b-tagging		80-90%	76-86%	

Note: Both scenarios implement fixes w.r.t the original, e.g. bremsstrahlung for electrons, multiple scattering, resolutions in forward region

Example parametrization for muons

٠

Higgs self-coupling: Cross-sections at FCC-hh

Higgs couplings: Top Yukawa coupling

CERN-ACC-2018-0045 & <u>M. Mangano at FCC physics workshop</u>

Exploit the ratio of $\overline{tt}H$ over $\overline{tt}Z$ for syst. cancellation

- Boosted top, $H \rightarrow \overline{b}b$ decays, $p_T(H,t) > 250$ GeV
- Fit $\overline{tt}H$ and $\overline{tt}Z$ simultaneously with m_{ii} templates
- Assume precise measurement of \overline{ttZ} from FCC-ee, and of backgrounds from control regions

	Precision in %			
Coupling	80 TeV	100 TeV	120 TeV	
$\boldsymbol{\delta} g_t^{\prime} g_t$	1.2	1	0.85	

Scaling of statistical uncertainty as extrapolation

Higgs self-coupling projections: Systematic uncertainties

Source of uncertainty	Syst. 1	Syst. 2	Syst. 3	Applies to	Correlated
Common systematics					
b-jet ID / b-jet	0.5%	1%	2%	Signals, MC bkgs.	1
Luminosity	0.5%	1%	2%	Signals, MC bkgs.	\checkmark
Signal cross-section	0.5%	1%	1.5%	Signals, MC bkgs.	1
$b\bar{b}\gamma\gamma$ systematics					
γ ID / γ	0.5%	1%	2%	Signals, MC bkgs.	X
$b\bar{b}\ell\ell + E_{\rm T}^{\rm miss}$ systematics					
Lepton ID / lepton	0.5%	1%	2%	Signals, MC bkgs.	×
Data-driven bkg. est.	-	1%	1%	V + jets	×
Data-driven bkg. est.	-	-	1%	$t\overline{t}$	×

- Following previous di-Higgs studies@FCC-hh
- Applied as rate systematics only, no shape effect

bbyy analysis: Center of mass energy scan

	80 TeV	100 TeV	120 TeV
No assumption on mbb	4.0% - st. only 3.6%	3.5% - st. only 3.4%	3.1% - st. only 2.8%
mbb res 10 GeV	2.5% - st. only 2.3%	2.2% - st. only 2.0%	1.9% - st. only 1.7%
mbb res 5 GeV	2.0% - st. only 1.9%	1.8% - st. only 1.6%	1.6% - st. only 1.4%
mbb res 3 GeV	1.8% - st. only 1.7%	1.6% - st. only 1.4%	1.5% - st. only 1.3%

Feasibility study for di-Higgs in *b*b*rr* events @ 100 TeV

Sam Valentine, Lennox Wood, Monica D'Onofrio, Jordy Degens, Carl Gwilliam, Cristiano Sebastiani

Previous studies using a BDT were developed in 2022 (see presentation at Higgs pair by Matt Sullivan) Results taking into account both TL - TH and TH TH

Very good sensitivity, comparable with published studies (<u>https://arxiv.org/pdf/2004.03505</u>)

	HH+jet study	WIP study			
	Yield [fb ⁻¹]				
Signal	0.14	1.22			
Background	0.96	38.94			
S/\sqrt{B}					
$ au_\ell au_h$	24.97	32.32			
$bar{b} au_\ell au_h$ comparison					

Feasibility study for di-Higgs in $\overline{b}b \tau \tau$ events @ 100 TeV

<u>Sam Valentine, Lennox Wood, Monica D'Onofrio, Jordy Degens, Carl Gwilliam, Cristiano Sebastiani</u>

Graph for each event, each object is a node Fully connected, each node has several features

Different models tested (GCN, GAT) Systematic evaluation of performance based on relevant metrics (S vs B separation, AUC)

Tested S vs B separation using only object variables and using also complex reconstructed kinematic variables Performance dramatically improved when kinematic variables such as b-jet pairs invariant mass, tau-lepton invariant mass etc are passed as individual nodes Area-Under-Curve in ROC curve 0.82 0.99 Use also radial distances among b and tau objects and ETMiss centrality as in ATLAS di-Higgs studies

Excellent separation achieved

$\overline{bbll} + E_T^{miss}$ @ 100 TeV: Strategy overview

Birgit Stapf, Elisabetto Gallo, Kerstin Tackmann, Christophe Grojean

Signal signature

И

H

Lepton pair + E_{τ}^{Miss} + 2 *b*-jets

Leptons isolated from *b*-jets

Cut-based event selection

exploiting signal kinematics

• Targeted suppression of \overline{tt}

background using

$$m_{lb}^{\text{reco}} = \min\left(\frac{m_{l_1b_1} + m_{l_2b_2}}{2}, \frac{m_{l_2b_1} + m_{l_1b_2}}{2}\right)$$

- <u>Stransverse mass</u> m_{T2} predicts invisible mass contribution
 - Capture the full *HH* decay
 - Fit to m_{T2} distribution in 5 categories depending on lepton flavours and if Z(ll) decay

$\overline{b}bll + E_T^{miss}$ @ 100 TeV: Results

Birgit Stapf, Elisabetto Gallo, Kerstin Tackmann, Christophe Grojean

Higgs self-coupling modifier κ_{λ} interpretation

- Parametrized dependence of σ (ggHH) on κ_{λ}
 - Inputs: $\kappa_{\lambda} = 1.0, 2.4, 3.0$
- \circ $\;$ All other couplings fixed to SM $\;$
- NLO cross-sections at 100 TeV, with *k*-factor independent of κ_{λ}
- No Higgs BR dependance on κ_{λ} and uncertainties or other additional theory uncertainties

Di-Higgs cross-section dependance on κ_{λ} in *pp*-collisions

Higgs self-coupling @ ILC

- Two production modes:
 - Higgsstrahlung, peaks ~500 GeV
 - WW-fusion, above ~1 TeV
 - \rightarrow need runs at both energies for maximum κ_{λ} precision

- Studied dominant channels 4b and bbWW
- Advantage of *e*-collider: *ZHH* cross-section increases with , hence better constraints at values > 1 than *pp*-colliders

Quartic Higgs self-coupling

$$V(h) \approx m_h^2 h^2 + (1 + \kappa_3) \lambda_{hhh}^{SM} v h^3 + \frac{1}{4} (1 + \kappa_4) \lambda_{hhhh}^{SM} h^4$$

Triple Higgs production measurements will remain challenging, even at FCC-hh due to very low cross-section

Again ~ O(100) smaller than the *HH* cross-section

Studies in final states with 4bs, <u>tau pairs</u> and <u>photon pairs</u> and <u>more recently 6b</u>

Number of selected signal events ~O(100)

Combining several channels 3σ may be reached

