Higgs couplings projections at the FCC-hh

Part of WIP with T. Armadillo, E. Celada, J. t. Hoeve, F. Maltoni, L. Mantani, J. Rojo, A. N. Rossia, ST, M. Thomas, E. Vryonidou

2

UCLouvain

• Scale each Higgs interaction with a kappa modifier

Simone Tentori FCC Workshop, CERN, 16/01/25

• Scale each Higgs interaction with a kappa modifier $\sigma(i \to H \to f) = \frac{\sigma(i \to H) \Gamma_f}{\Gamma_H}$ $\sigma(i \to H \to f) = \sigma_{\rm SM}^i {\rm Br}_{\rm SM} \cdot \begin{pmatrix} \kappa_i^2 \kappa_f^2 \\ \kappa_H^2 \end{pmatrix}$

Simone Tentori FCC Workshop, CERN, 16/01/25

Louvain

Simone Tentori

• Easy comparison between colliders, easy interpretation (BSM)

FCC Workshop, CERN, 16/01/25

• Scale each Higgs interaction with a kappa modifier $\sigma(i \to H \to f) = \frac{\sigma(i \to H) \Gamma_f}{\Gamma_H}$ $\sigma(i \to H \to f) = \sigma_{\rm SM}^i \operatorname{Br}_{\rm SM} \cdot \begin{pmatrix} \kappa_i^2 \kappa_f^2 \\ \kappa_H^2 \end{pmatrix}$

- Easy comparison between colliders, easy interpretation (BSM)
- Not fully exploiting kinematics & beam polarization

Simone Tentori

FCC Workshop, CERN, 16/01/25

Kappa Framework III

$\kappa_{\rm H}$ expression depends on the BSM Physics

The kappa-0 framework:

- $(\kappa_{H^0})^2 = \sum_{f} \kappa_{f^2} Br_{f^{SM}}$
- No new Higgs decay channels
- Testable in any collider

The карра-1(2) framework:

- (κ_H)^2= (κ_H⁰)^2/(1-Br_{BSM})
- New BSM light states or Higgs decays

Following Granada 2019 naming scheme [1905.03764]

UCLouvgin

Simone Tentori

Kappa Framework III

κ_{H} expression depends on the BSM Physics

The kappa-0 framework:

- $(\kappa_{H^0})^2 = \sum_{f} \kappa_{f^2} Br_{f^{SM}}$
- No new Higgs decay channels
- Testable in any collider

• The карра-3 framework:

- (κ_H)^2= (κ_H⁰)^2/(1-Br_{BSM})
- New BSM light states or Higgs decays
- HL-LHC AS FIT BASELINE

Following Granada 2019 naming scheme [1905.03764]

UCLouvain

Simone Tentori

Brinv: Invisible Branching ratio Can be measured

- Target for HL-LHC (2.5% at ۰ 95% C.L.)

BSM Branching ratio

kappa-1 framework

*More in the Backup

CLouvain

Simone Tentori

h

h

γ

 Target for HL-LHC (2.5% at 95% C.L.)

BSM Branching ratio

kappa-2 framework

Br_{und}: Undetected Branching ratios

- Cannot be targeted
- Free in the fit
- Needs proxy for Γ_H or additional conditions

Simone Tentori

FCC Workshop, CERN, 16/01/25

*More in the Backup

ouvain

h

- Can be measured
 Target for HL-LHC (2.5% at
 - 95% C.L.)

BSM Branching ratio

kappa-2 framework

*More in the Backup

ouvain

For more SMEFiT take a look at Jaco Ter Hoeve talk on Tuesday!

Methodology

- New functionalities to implement kappa framework
- Input based on recent SnowMass2022 projection
- Validated against HEPfit 2019 results (big thanks to Jorge de Blas, for helping with the validation)

	FCC	-ee 240	LHeC				
	HepFit	SMEFIT	HepFit	SMEFIT			
κ_W	1.3	1.3	0.994*	0.994*			
κ_Z	0.21	0.2	0.988^{*}	0.988^{*}			
κ_g	1.7	1.6	3.9	3.9			
κ_γ	4.8	4.7	7.8	7.7			
$\kappa_{Z\gamma}$	71	75	-	-			
κ_c	1.8	1.7	4.3	4.2			
κ_t	-	-	-	-			
κ_b	1.3	1.3	2.3	2.3			
κ_{μ}	10	9.9	-	-			
$\kappa_{ au}$	1.4	1.4	3.6	3.6			
Br _{inv} .	0.22	0.27	2.2	2			
Br _{und.}	1.2	1.2	2.2	2.2			

Simone Tentori

FCC Workshop, CERN, 16/01/25

JCLouvain

FCChh input

Observable	Fit Input	$\delta_{ m stat}$	$ \delta_{ m tot} $	κ -dependence
$\mu_{gg}^{\gamma\gamma}$	$\delta \mu / \mu$	0.1%	1.5%	$\frac{\kappa_g^2 \kappa_\gamma^2}{k_H^2}$
$\mu^{\mu\mu}_{gg}$	$\delta \mu / \mu$	0.28%	1.2%	$\frac{\kappa_g^2 \kappa_\mu^2}{k_H^2}$
μ_{gg}^{ZZ}	$\delta \mu / \mu$	0.18%	1.9%	$\frac{\frac{\kappa_g^2 \kappa_Z^2}{\kappa_Z}}{k_H^2}$
$\mu^{Z\gamma}_{gg}$	$\delta \mu / \mu$	0.55%	1.6%	$rac{\kappa_g^2 \kappa_{Z\gamma}^2}{k_H^2}$
$\mu^{bar{b}}_{tar{t}}$	$\delta \mu / \mu$	1.05%	1.9%	$rac{\kappa_t^2\kappa_b^2}{k_H^2}$
$R^{\mu\mu}_{ZZ}$	$\delta R/R$	0.33%	1.3%	$\frac{\kappa_{\mu}^2}{\kappa_{Z}^2}$
$R_{ZZ}^{\gamma\gamma}$	$\delta R/R$	0.17%	0.8%	$\frac{\kappa_{\gamma}^2}{\kappa_{Z}^2}$
$R^{\gamma\gamma}_{\mu\mu}$	$\delta R/R$	0.29%	1.4%	$\frac{\kappa_{\gamma}^2}{\kappa_{\mu}^2}$
$R^{Z\gamma}_{\mu\mu}$	$\delta R/R$	0.58%	1.8%	$\frac{\kappa_{Z\gamma}^2}{\kappa_{\mu}^2}$
Brinv.	Briny.	0.01~%	0.01 %	Brinv.
$ ilde{\mu}_{WH}^{\gamma\gamma}(*)$	$\delta\sigma/\sigma$	1.4%	1.4%	$rac{\kappa_W^2 \kappa_\gamma^2}{k_H^2}$
$\tilde{\mu}_{WH}^{ au au}(*)$	$\delta\sigma/\sigma$	1.6%	1.6%	$rac{\kappa_W^2 \kappa_ au^2}{k_H^2}$
$ ilde{\mu}_{WH}^{bar{b}}(*)$	$\delta\sigma/\sigma$	1.1%	1.1%	$rac{\kappa_W^2\kappa_b^2}{k_H^2}$
$R^{WW}_{\gamma\gamma}(**)$	$\delta R/R$	1.5%	1.5%	$\frac{\kappa_W^2}{\kappa_\gamma^2}$

Simone Tentori

FCC Workshop, CERN, 16/01/25

For more FCChh input look at previous talk by Birgit Stapf

Original 2019 ESPPU Input [Eur. Phys. J. C (2019) 79:474]

• K_w

K_g Kγ

Ku

K_Z K_Zγ

Kt Kb

- K_τ
- K_b, K_Y (already present, reduce correlations)

FCC Workshop, CERN, 16/01/25

Simone Tentori

17

- Unique kappa modifier: κ_{univ.}
- HLLHC as baseline
- Brinv. and Brund. turned on
- K_{univ} ≤ 1 : needed due to Br_{und}
- UV Case: Minimal Scalar Extension

Simone Tentori

FCC Workshop, CERN, 16/01/25

- Two kappa modifiers: κ_f , κ_v
- HLLHC as baseline
- Brinv. and Brund. turned on
- κ_v ≤ 1 : needed due to Br_{und}
- UV Case: Type I 2HDM

Simone Tentori

FCC Workshop, CERN, 16/01/25

UCLouvain

26

- Ten kappa modifiers
- HLLHC as baseline
- Br_{inv.} and Br_{und.} turned on
- $\kappa_Z \le 1$, $\kappa_W \le 1$: needed due to $Br_{und.}$

Simone Tentori FC

HL-LHC baseline

Simone Tentori FCC Workshop, CERN, 16/01/25

LHeC effects

HL-LHC+LHeC baseline

Simone Tentori

FCC Workshop, CERN, 16/01/25

LHeC effects

Simone Tentori FCC Workshop, CERN, 16/01/25

35

Ċ

FCChh can test all κ but κ_c considered in $\ell^+\ell^-$ colliders studies

Simone Tentori FCC Workshop, CERN, 16/01/25

- FCChh can test all κ but κ_c considered in $\ell^+\ell^-$ colliders studies
- Unique opportunity to precisely measure rare decays

Simone Tentori FCC Workshop, CERN, 16/01/25

- FCChh can test all κ but κ_c considered in $\ell^+\ell^-$ colliders studies
- Unique opportunity to precisely measure rare decays
- Fermion modifier almost as accurate as $\ell^+\ell^-$

Simone Tentori FCC Workshop, CERN, 16/01/25

39

- FCChh can test all κ but κ_c considered in $\ell^+\ell^-$ colliders studies
- Unique opportunity to precisely measure rare decays
- Fermion modifier almost as accurate as $\ell^+\ell^-$
- Vector modifiers (in particular κ_z) cannot compete with l⁺l⁻ colliders
 - LHeC intermediate stage can improve the situation (not a lot for κ_z)
 - Can limit the testing of BSM models by a lot

Simone Tentori

- FCChh can test all κ but κ_c considered in $\ell^+\ell^-$ colliders studies
- Unique opportunity to precisely measure rare decays
- Fermion modifier almost as accurate as $\ell^+\ell^-$
- Vector modifiers (in particular κ_z) cannot compete with ℓ⁺ℓ⁻ colliders
 - LHeC intermediate stage can improve the situation (not a lot for κ_z)
 - Can limit the testing of BSM models by a lot
 - Needs a $\kappa_V \leq 1$ limitation since no ZH inclusive measurement

Simone Tentori

FCC Workshop, CERN, 16/01/25

- FCChh can test all κ but κ_c considered in $\ell^+\ell^-$ colliders studies
- Unique opportunity to precisely measure rare decays
- Fermion modifier almost as accurate as $\ell^+\ell^-$
- Vector modifiers (in particular κ_z) cannot compete with ℓ⁺ℓ⁻ colliders
 - LHeC intermediate stage can improve the situation (not a lot for κ_z)
 - Can limit the testing of BSM models by a lot
- Needs a $\kappa_V \leq 1$ limitation since no ZH inclusive measurement
- But in general different kappa frameworks lead to different conclusions on FCChh alone potential!

Simone Tentori FCC Workshop, CERN, 16/01/25

- FCChh can test all κ but κ_c considered in $\ell^+\ell^-$ colliders studies
- Unique opportunity to precisely measure rare decays
- Fermion modifier almost as accurate as $\ell^+\ell^-$
- Vector modifiers (in particular κ_z) cannot compete with ℓ⁺ℓ⁻ colliders
 - LHeC intermediate stage can improve the situation (not a lot for κ_z)
 Can limit the testing of BSM models by a lot
- Needs a $\kappa_V \leq 1$ limitation since no ZH inclusive measurement
- But in general different kappa frameworks lead to different conclusions on FCChh alone potential!

Simone Tentori FCC Workshop, CERN, 16/01/25

Thanks for the attention!

Backup

Simone Tentori FCC Workshop, CERN, 16/01/25

This C IVCLouvain

FCChh unconstrained

	Br _{und.}	KW	κ_Z	$\kappa_{Z\gamma}$	κ_b	κ_g	κ_γ	κ_{μ}	κ_t	$\mathcal{K}_{ au}$	
$\mathrm{Br}_{\mathrm{und.}}$	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	- 0.9
κ_W	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.6
κ_Z	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0
$\kappa_{Z\gamma}$	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	- 0.3
κ_b	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
κ_g	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
κ_{γ}	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.3
κ_{μ}	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
κ_t	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	-0.0
$\kappa_{ au}$	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	-0.9

Simone Tentori

FCC Workshop, CERN, 16/01/25

44

C

FCChh constrained

Simone Tentori

FCC Workshop, CERN, 16/01/25

45

C

LheC correlations

Simone Tentori

FCC Workshop, CERN, 16/01/25

46

C

			$\kappa_W[\%]$	$\kappa_Z[\%]$	$\kappa_g[\%]$	$\kappa_{\gamma}[\%]$	$\kappa_{Z\gamma}[\%]$	$\kappa_c[\%]$	$\kappa_t[\%]$	κ _b [%]	$\kappa_{\mu}[\%]$	$\kappa_{\tau}[\%]$
HL-I	LHC	exp+th	1.6	1.5	2.2	1.8	11	-	2.6	3.5	5.3	2
IЦ	C	exp	0.74	1.2	3.6	7.5	-	4	-	2.1	-	3.3
LI	ec	exp+th	0.78	1.2	3.6	7.5	-	4.1	-	2.2	-	3.3
	250	exp	1.8	0.22	2.3	6.5	26	2.4	-	1.8	14	1.9
	200	exp+th	1.8	0.24	2.3	6.6	25	2.4	-	1.8	14	1.9
ILC	500	exp	0.21	0.17	0.92	3.4	26	1.1	-	0.43	9.4	0.65
ILC	500	exp+th	0.28	0.19	1	3.4	26	1.2	-	0.53	9.3	0.71
	1000	exp	0.13	0.16	0.58	1.9	26	0.7	-	0.29	6.1	0.51
	1000	exp+th	0.18	0.18	0.69	2	26	0.78	-	0.39	6.1	0.56
	380	exp	0.77	0.43	2.1	-	-	4.6	-	1.6	-	2.9
	000	exp+th	0.83	0.45	2.2	-	-	4.5	-	1.6		2.9
CLIC	1500	exp	0.16	0.28	1.1	4.9	15	1.8	2.9	0.33	12	1.3
OLIC	1000	exp+th	0.24	0.32	1.2	4.9	15	1.9	2.8	0.53	12	1.3
	3000	exp	0.1	0.26	0.82	2.2	6.9	1.3	2.8	0.18	5.6	0.87
	3000	exp+th	0.16	0.31	0.91	2.2	6.9	1.3	2.8	0.36	5.6	0.88
	240	exp	0.57	0.074	0.7	1.6	4.3	1.1	-	0.56	3.3	0.6
CEPC	240	exp+th	0.77	0.11	1.1	1.8	4.2	1.4	-	0.83	3.3	0.82
ULI U	360	exp	0.33	0.071	0.5	1.5	4.1	1	-	0.33	3.1	0.38
	000	exp+th	0.46	0.1	0.81	1.6	4.1	1.2	-	0.54	3.2	0.54
	240	exp	0.9	0.11	1.1	3.2	-	1.2	-	0.88	6.8	0.93
FCC-ee	210	exp+th	0.93	0.14	1.3	3.3	-	1.3	-	0.96	6.9	0.97
100-00	365	exp	0.28	0.091	0.7	2.7		0.82	-	0.37	6	0.47
	000	exp+th	0.3	0.12	0.81	2.7	-	0.95	-	0.45	6.1	0.49
ECC	hh	exp+th	0.44	0.73	0.84	0.63	1	-	1.3	1.1	0.79	1.2
FUU	11.1.1.1	exp	0.23	0.089	0.51	0.28	0.78	0.81	1.2	0.33	0.44	0.41
	nn+ee	exp+th	0.24	0.12	0.55	0.3	0.8	0.93	1.2	0.4	0.46	0.43
muC	2000	exp	0.38	1.2	1.6	3.1	27	6.1	-	0.85	15	2.1
muC	3000	exp+th	0.42	1.2	1.7	3.2	27	6.1	-	0.98	15	2.1
muC	10000	exp	0.11	0.34	0.45	0.82	6	1.8	-	0.23	2.8	0.59
mue	10000	exp+th	0.21	0.41	0.73	0.94	6	1.9	-	0.53	2.9	0.63

Simone Tentori

FCC Workshop, CERN, 16/01/25

C

	$\kappa_{ m univ.}[\%]$		Br	inv. [%]	$\mathrm{Br}_{\mathrm{und.}}[\%]$		
	Exp Exp+Th		Exp	Exp Exp+Th		Exp+Th	
$HL-LHC^*$	(0.58		1.6	2.5		
$LHeC^*$	0.22	0.25	0.87	1	1	1.2	
ILC^*	0.063	0.09	0.14	0.16	0.29	0.42	
$CLIC^*$	0.039	0.087	0.16	0.27	0.18	0.4	
$CEPC^*$	0.041	0.075	0.059	0.065	0.2	0.45	
FCC-ee*	0.05	0.078	0.13	0.15	0.24	0.41	
FCC-hh*	0.2		C	0.025	0.85		
FCC^*	0.052	0.076	0.025	0.025	0.24	0.39	
muC 3000*	0.19	0.23	0.82	0.93	0.9	1	
muC 10000*	0.056	0.11	0.25	0.49	0.26	0.49	

C

UCLouvain

Simone Tentori

	$\kappa_F[\%]$		κ	$_V[\%]$	Br_{i}	nv.[%]	$\mathrm{Br}_{\mathrm{und.}}[\%]$		
5	Exp	Exp+Th	Exp	Exp+Th	Exp	Exp+Th	Exp	Exp+Th	
HL-LHC*	1.2			0.57		1.6	2.5		
$LHeC^*$	0.93	0.96	0.25	0.28	0.97	1.1	1.1	1.3	
ILC^*	0.28	0.33	0.07	0.091	0.15	0.16	0.32	0.42	
$CLIC^*$	0.16	0.26	0.04	0.089	0.16	0.27	0.18	0.41	
$CEPC^*$	0.21	0.33	0.049	0.074	0.062	0.066	0.24	0.46	
FCC-ee*	0.29	0.37	0.061	0.078	0.14	0.15	0.31	0.42	
FCC-hh*		0.28		0.2	0	.025	0.87		
FCC^*	0.19	0.22	0.058	0.078	0.025	0.025	0.28	0.4	
muC $3000*$	0.66	0.71	0.2	0.23	0.83	0.93	0.91	1	
muC 10000*	0.21	0.33	0.056	0.11	0.26	0.51	0.26	0.53	

Simone Tentori

FCC Workshop, CERN, 16/01/25

C

kappa3

2			κ_W	κ_Z	κ_g	Ky	$\kappa_{Z\gamma}$	κ _c	κ_t	ĸь	κ _µ	κ_{τ}	Br _{inv} .	Brund.
HL-L	HC*	exp+th	1.8	1.8	2.1	1.6	11	-	2.6	2.7	5.3	1.9	2.1	5.2
LHO	C*	exp	0.37	0.74	1.7	1.4	11	3.7	2.4	1.2	5.3	1.5	1.1	1.3
LHe	C.	exp+th	0.4	0.74	1.7	1.3	11	3.8	2.5	1.3	5.5	1.5	1.1	1.4
	250	exp	0.89	0.17	1.2	1.3	10	1.8	2.4	0.85	4.9	0.93	0.19	0.8
	200	exp+th	0.9	0.19	1.2	1.3	9.9	1.8	2.3	0.9	5	0.93	0.19	0.9
ILC*	500	exp	0.17	0.15	0.8	1.2	10	1.1	2.3	0.41	4.5	0.59	0.16	0.45
in the	000	exp+th	0.23	0.16	0.85	1.2	10	1.2	2.3	0.49	4.7	0.62	0.17	0.54
	1000	exp	0.096	0.14	0.53	1.1	10	0.7	2.3	0.28	3.9	0.48	0.15	0.32
	1000	exp+th	0.14	0.15	0.62	1.1	10	0.76	2.3	0.35	4	0.5	0.16	0.4
	380	exp	0.56	0.31	1.4	1.3	11	4.4	2.4	1.1	5.3	1.5	0.37	1.3
	000	exp+th	0.57	0.32	1.4	1.3	11	4.4	2.4	1.1	5.3	1.4	0.37	1.3
CLIC*	1500	exp	0.12	0.26	0.88	1.2	8.8	1.8	1.8	0.32	4.8	0.95	0.27	0.45
	1000	exp+th	0.16	0.27	0.93	1.3	8.9	1.8	1.8	0.45	4.8	0.97	0.31	0.56
	3000	exp	0.07	0.26	0.65	1.1	6	1.3	1.8	0.16	3.9	0.71	0.22	0.29
	0000	exp+th	0.11	0.26	0.72	1.1	5.8	1.3	1.8	0.28	3.8	0.72	0.27	0.4
	240	exp	0.54	0.057	0.55	1	4	1.1	2.3	0.39	2.8	0.43	0.064	0.28
CEPC*	210	exp+th	0.57	0.095	0.75	1	4	1.2	2.3	0.52	2.8	0.48	0.067	0.66
	360	exp	0.36	0.057	0.49	0.95	3.8	1	2.3	0.3	2.6	0.35	0.062	0.27
	000	exp+th	0.37	0.091	0.67	0.99	3.9	1.1	2.3	0.43	2.7	0.41	0.067	0.55
	240	exp	0.67	0.079	0.79	1.2	11	0.93	2.3	0.49	4.1	0.56	0.17	0.4
FCC-ee*	210	exp+th	0.66	0.12	0.9	1.2	11	1.1	2.3	0.62	4.1	0.61	0.19	0.72
10000	365	exp	0.26	0.075	0.64	1.2	11	0.82	2.3	0.33	4	0.43	0.15	0.32
		exp+th	0.24	0.095	0.7	1.2	11	0.91	2.3	0.41	3.9	0.44	0.15	0.42
FCC*	hh	exp+th	1.1	1.2	0.87	0.58	0.98	-	1.2	0.97	0.7	0.99	0.025	3
FUU	hh Loo	exp	0.22	0.074	0.47	0.28	0.79	0.8	1.1	0.3	0.45	0.39	0.024	0.31
	nn+ee	exp+th	0.21	0.096	0.51	0.28	0.77	0.89	1.1	0.37	0.44	0.4	0.025	0.41
muCa	muC 2000*		0.26	0.82	1.2	1.2	9.9	5.9	2.3	0.76	4.9	1.3	0.88	1
mue a	000	exp+th	0.29	0.81	1.2	1.2	10	5.9	2.4	0.83	4.9	1.3	0.96	1.1
muC 1	0000*	exp	0.071	0.32	0.41	0.69	5.3	1.7	2.3	0.22	2.5	0.54	0.29	0.29
mue 1	0000	exp+th	0.15	0.32	0.64	0.78	5.4	1.8	2.3	0.4	2.5	0.57	0.5	0.52

Simone Tentori

FCC Workshop, CERN, 16/01/25

