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The work SO far: FCC Conceptual Design Report:
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Recent developments motivated by

e Continued progress in the exploration of the general physics potential
* synergy/complementarity between FCC-ee and FCC-hh
e experimental opportunities beyond general-purpose detectors -> Rojo
 Changes in baseline accelerator configuration (layout and dipole field targets -> Todesco)

 Contributions to the ESPP

>

FCC-hh physics and performance WG (https://indico.cern.ch/category/18813/) =>

Birgit’s talk


https://indico.cern.ch/category/18813/

Presentations at the 4 general mtgs:

* Energy/luminosity/operation scenarios - Frank Zimmermann

 100TeV -> 80/120 TeV CDR projections: results so far - Michelangelo Mangano
 FCC-hh simulation studies: the work ahead - Michele Selvagagi

 Update on longitudinal same-sign WW scattering studies - Marc-Andre Pleier
 Heavy Neutral Leptons at the FCC-hh: Where do we stand? - Stefan Antusch
DM in mono-X and VBF - Giulio Marino

 Heavy vector singlets at future colliders - Timothy Martonhelyi

* Higgs without Higgs - Francesco Riva

* Exploring the Flavour Symmetry Landscape - Riccardo Rattazzi

 ALPs and massive gravitons in yy - David d'Enterria

 FASER-like experiments for FCC-hh - Juan Rojo

* 4D tracking algorithms to improve pile-up robustness - Valentina Cairo
 Update on HH->bbyy studies - Angela Taliercio

e Status/plans for updated HH->bbTt studies - Monica D’Onofrio

e Single Higgs studies, DESY team - Daina Leyva Pernia

 Search for ttHZ - Shankha Banerjee

* Improving the sensitivity of the Higgs self-coupling by exploiting the kinematical properties - Bastien Voirin
 Towards updated Higgs coupling projections at the FCC-hh - Juan Rojo

* High-level comparisons of energy and luminosity scenarios - Elliot Lipeles

« UHE atmospheric neutrinos and FCC-hh, Maria Vittoria Garzelli



Slides from Frank Zimmermann (link), see also Frank’s note

Assumptions & possible parameter range

With present layout of the FCC, and after D|P°|e field [T]

dlllgent optimization (by Massimo, Gustavo, not far above peak field of HL-
and Thys), the following energies can be LHC Nb,Sn quadrupoles
reached according to the dipole field: 14 84 Nb,Sn or HTS
17 102 HTS
20 120 HTS

Increasing the c.m. energy beyond ~100 TeV, we will assume that the synchrotron-radiation power could
not increase, beyond a total of about 4 MW (which must be removed from inside the cold magnets) sk

On the other hand, when decreasing the beam energy, one can hold either the synchrotron-radiation
power (increasing current up to HL-LHC values) or the beam current constant. Also, the pile-up might need
to be limited, e.g. to ~1000 events/crossing. We thus consider three scenarios for 12 T (0.5 Aand 1.12 A
beam current, the latter without or with pile-up levelling).

Finally, further overall lowering the synchrotron radiation power, by reducing the number of bunches, in
order to restrict the total power consumption of the future FCC-hh, would decrease peak and integrated
luminosity by the same factor.

** 30 W/m/beam => 5 MW total, released inside magnets operating at 1.9K !!
Absorption by beam screen at 50K to room T => 100MW cryo plant ...



https://indico.cern.ch/event/1439072/contributions/6106995/attachments/2917946/5125895/FCC-hh-scenarios-2024kickoff.pdf
https://indico.cern.ch/event/1439072/contributions/6106995/attachments/2917946/5120981/FCC_hh_scenarios.pdf
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SiX scenarios

1) A machine based on 12 T dipoles, with a beam current of 0.5 A as considered for the
16 T FCC-hh machine (F12LL).

2) A machine based on the same 12 T technology close to deployment, but with a
higher beam current of 1.1 A, as considered for the HL-LHC (F12HL).

3) The same case as F12HL but limiting the pile up not to exceed a value of 1000
(F12PU).

4) A machine based on 14 T dipoles, and 0.5 A current (F14).

5) A machine based on High Temperature Superconductor (HTS) dipole magnets with a
field of 17 T, just exceeding 100 TeV c.m., still with 0.5 A (F17).

6) A machine also based on High Temperature Superconductor (HTS) dipole magnets
with a field of 20 T, and a beam current of 0.2 A, so that the synchrotron-radiation
power is limited to about 2 MW / beam (F20).
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Early assessment of nhew energy scenarios for benchmark projections: Higgs

(assuming equal luminosity)

 Minor impact on key observables, notably precision measurements of rare couplings and self-
coupling — within range of systematics



Early assessment of new energy scenarios for benchmark projections: Higgs
(@assuming equal luminosity)

 Minor impact on key observables, notably precision measurements of rare couplings and self-
coupling — within range of systematics
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Early assessment of new energy scenarios for benchmark projections: Higgs
(assuming equal luminosity)

 Minor impact on key observables, notably precision measurements of rare couplings and self-
coupling — within range of systematics

Higgs coupll_ngg Coupling precision 100 TeV_CDR 80 TeV 120 TeV
beyond precision baseline
reach of H tactory SGHyy / Ghyy (%) 0.4 0.4 0.4
Engp / JHup (o/o) 0.65 0.7 0.6
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~ . _>
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. Target det performance: LHC Run 2 conditions
. Intermediate performance o(120TeV) |
ll.Conservative: extrapolated HL-LHC performance, 61(100TeV) ~ 1.3 =>increase &t by 15%
Okrrr( % ) with today’s algo’s (eg no timing, etc) HH
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Final assessment, including updated analyses: ongoing work by Performance WG, Birgit’s talk
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Disappearing charged track analyses (at ~full pileup)
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Significant impact of potential luminosity loss at the highest energy

BNQ

Comparing 102 TeV (FI17) to 120 TeV to (F20) &% | Penn
“Collider-Reach” tool from Salam and Weiler: http://collider-reach.web.cern.ch/

synchrotron radiation (SR)
cooling issue can be improved
120 TeV is not that interesting.
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Significant impact of potential luminosity loss at the highest energy

change of discovery reach w.r.t. canonical 100 TeV CDR scenario,
N different mass regions:

Change in | Change in
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40—

Cross-
over

Scenario

Lumi/year
name

Energy

~always
worse

~3 TeV

~|25
GeV

~always
worse

~25 TeV

FI2ZLL | 72 TeV

FIZHL | 72 TeV | 2000 fb-! gl 7. ~10.4 ~32

FI2PU | 72 TeV

Fl4 84 TeV

~12.6

~42

F20 |120TeV| 370 fb-! o’ A

EIEN
B
126 | -2

~2.6
~2.8
~2.8

Collider-reach extrapolations, Elliot @ https://indico.cern.ch/event/1461211/
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Preliminary conclusions of the studies of hew baseline and variations



Preliminary conclusions of the studies of hew baseline and variations

+ 100 -> O(80) TeV

* the reduced rates for physics in the O(TeV) mass region (eg Higgs, EW, EWinos) can be compensated
by higher luminosity or improved detector performance

e mass reach at the highest masses (\/E ~ 0.5 \/E) IS reduced by 15-20%, depending on luminosity

* energy reduction well below 80 TeV might compromise ability to fully cover DM WIMP scenarios with
EW doublets (higgsino-like), and reduce precision for H selfcoupling



Preliminary conclusions of the studies of hew baseline and variations

+ 100 -> O(80) TeV

* the reduced rates for physics in the O(TeV) mass region (eg Higgs, EW, EWinos) can be compensated
by higher luminosity or improved detector performance

e mass reach at the highest masses (\/E ~ 0.5 \/E) IS reduced by 15-20%, depending on luminosity

* energy reduction well below 80 TeV might compromise ability to fully cover DM WIMP scenarios with

EW doublets (higgsino-like), and reduce precision for H selfcoupling
« 100 -> 120 TeV

 if drop in luminosity wrt baseline remains significant, O(2-3):

» potential loss for precision measurement in the TeV region (to be evaluated however in the context of
reduced pileup, which might improve systematics limitations)

 marginal gain in mass reach only at the highest possible masses



Next steps: short-term (< 31 March 2025)

 Document latest studies for the ESPP submission
e Impact of various energy scenarios
e updated Higgs studies (Birgit talk), including updated impact on global EW/H fits (Tentori, de Blas talks)
 mature studies resulting from the work shown in the recent WG mtgs (mail form conveners will follow)




Next steps: short-term (< 31 March 2025)

 Document latest studies for the ESPP submission
e Impact of various energy scenarios
e updated Higgs studies (Birgit talk), including updated impact on global EW/H fits (Tentori, de Blas talks)
 mature studies resulting from the work shown in the recent WG mtgs (mail form conveners will follow)

Next steps: medium-term (< 23 June 2025)

 Complete ongoing studies for contributions to the ESPP Symposium in Venice



Next steps: longer term — follow up of ESPP conclusions
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1. Expand scope of ee-hh synergy



Next steps: longer term — follow up of ESPP conclusions

1. Expand scope of ee-hh synergy

2. Review and keep uptodate detector performance potential, in view of
- accelerator operating scenarios (eg higher pileup scenarios at lower energies),
- technology evolution,
- analysis progress (match to progress of LHC experiments),

- etc.etc.



Next steps: longer term — follow up of ESPP conclusions

1. Expand scope of ee-hh synergy
2. Review and keep uptodate detector performance potential, in view of
- accelerator operating scenarios (eg higher pileup scenarios at lower energies),
- technology evolution,
- analysis progress (match to progress of LHC experiments),
- eflc.etc.

3. Expand landscape of complementary experiments/detectors (Forward, HI, Flavour)



Expanding the scope of ee-hh synergy studies

Key question to address:
given a discovery at FCC-ee (whether direct, eg ALPs, HNL, BSM H decays, ..., or indirect, eg
deviations in EWPQO or in Higgs properties), how will FCC-hh contribute to the interpretation of this
discovery?
 What information will it add to the study of the properties of new particles observed at FCC-ee?
 How will it uncover the microscopic origin of SM deviations see at FCC-ee?



Examples
 Higgs
e detailed studies for the complete spectrum of SM Higgs decays (eg only basic studies
available for H-WW~* | 11, cc ) and production modes (VH, VBF, large pt, ...)
* reach for rare/forbidden/exotic Higgs decays possibly accessible to FCC-ee, and beyond
(Gallen’s talk)



Examples
 Higgs

» detailed studies for the complete spectrum of SM Higgs decays (eg only basic studies
available for H-WW~* | 11, cc ) and production modes (VH, VBF, large pt, ...)
* reach for rare/forbidden/exotic Higgs decays possibly accessible to FCC-ee, and beyond

(Gallen’s talk)
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FCC-hh will have a Higgs sample larger
than the full FCC-ee statistics produced
at pr larger than 1 TeV: are there
opportunities to probe exotic Higgs
decays?



Examples

« EWPO: heavy vector resonances (see Torre’s talk)
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Plots like this should not be read In
terms of “which facility promises the
best constraint”, but in terms of
“should FCC-ee find a 3o deviation
in S/T/U, which handles will the
FCC-hh have to fully decode the
source of this deviation”



Examples

* Single-particle SM extensions, the Granada dictionary (Allwicher, Vuong talks)

Linear extensions of the Standard Model

[De Blas etal. 1711.10391]

> Finite number of new states can couple linearly to the SM fields: Granada dictionary

> Matching to SMEFT at d = 6 well known

Scalar S S1 So % = =1 Ch O3
(191)0 (171)1 (1’1)2 (1a2)% (1a3)0 (1a3)1 (1a4)% (174)%
w1 Wy W4 I1; II7 ¢
(37 1)—% (3a1)§ (37 1)—% (3a2)% (3a2)% (3’ 3)—%
0 Qo Q4 T o
(61 1)% (63 1)-% (6a 1)% (67 3)% (8> 2)%
Fermion N E Aq Ag b3 1
L)y LD, L2, L2z (1L3), (1,3),
U D Q1 Qs Q7 Ty 15
(3a 1)% (3a 1)_% (3a 2)% (3a 2)_% (3,2)% (3a3)_% (3a3)§
Vector B B, 12% Wi g G1 H L4
(19 1)0 (1a 1)1 (1,3)0 (1a3)1 (8a 1)0 (8a 1)1 (8a3)0 (1a2)%
£3 UQ u5 Ql Q5 X yl y5
(1,2).s 312 BDs (32 2 33z (62)1 (62)s

All (except very few) new states are probed by EWPOs at one-loop
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What are the actual prospects to detect these particles at FCC-hh, in the relevant
mass ranges?



Examples

 ALPs and HNLs (Polesello, Kontaxakis talks)
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 Include FCC-hh reach

 Explore implications at FCC-hh of concrete models for ALPs and HNLs,
considering potential signals of other manifestations of such models



