
8th FCC Physics Workshop

Analysis with the Julia language Pere Mato/CERN
14 January 2025

Why Julia?
❖ Invented in 2012 at MIT (mostly)

❖ Jeff Bezanson, Stefan Karpinski, Viral B. Shah, Alan Edelman

❖ Design goals and aims
❖ Open source

❖ Speed like C, but dynamic like Ruby/Python

❖ Obvious mathematical notation

❖ General purpose like Python

❖ As easy for statistics as R

❖ Powerful linear algebra like in Matlab

❖ Good for gluing programs together like the shell

2

Julia main Features
❖ Easy of use

❖ REPL, notebooks, garbage collected, expressive maths syntax

❖ Fast
❖ Not interpreted. Just ahead of time compiler (powered by LLVM)

❖ Reflexion, meta-programing, threads, vectorization, GPU support, HPC, etc.

❖ Advanced type system
❖ Powerful and sophisticated type expressions

❖ Multiple dispatch
❖ This allows packages to compose packages without knowing about each other

3

The Two Language Problem

4

❖ HEP needs a solution to the Two Language Problem
❖ C++ is fast but complex (and every day becoming more complex)

❖ Python is nice and easy but very slow (mitigated if you avoid loops)

❖ The community has developed ways to deal with these two
languages but we pay a price
❖ Interoperability is not always smooth (e.g. garbage collection side effects)

❖ Awkward constructions (e.g. the C++ strings in the PyRDF)

Excellent Tooling
❖ Julia has an outstanding package manager

❖ Express package interdependence with as few or
as many constraints as needed - Project.toml

❖ Preserve an exact environment for reproducibility
- Manifest.toml (with binary reps)

❖ Easy to create and register your own packages

❖ Semantic versioning universally adopted

❖ Built in profiling and debugging

❖ First class VSCode integration

❖ Easy to use package documentation system
5

Rich Ecosystem
❖ More than 10k packages

6

What do we need for FCC analysis
❖ Access to the Data

❖ Read access to ROOT files of EDM4hep events in EOS (XRootD protocol)

❖ Analysis Tools and Algorithms
❖ Availability of a extensive ecosystem of tools (e.g. histogramming, statistics, ML) and

HEP specific algorithms (e.g. jet finding, flavor tagging)

❖ Plotting
❖ Data visualization specific to HEP common practices

❖ Scaling Out
❖ Multi-core, accelerators (GPUs), multi-nodes, grid and cloud computing, etc.

7

Reading EDM4hep files

https://github.com/peremato/EDM4hep.jl
https://github.com/JuliaHEP/UnROOT.jl
https://github.com/JuliaHEP/XRootD.jl

https://github.com/peremato/EDM4hep.jl
https://github.com/JuliaHEP/UnROOT.jl
https://github.com/JuliaHEP/XRootD.jl

The EDM4hep Data Model

❖ Covering the simulation/digitization/reconstruction/analysis domains
9

EDM4hep.jl

❖ Generate Julia ‘friendly’ data structures for the EDM4hep data model
❖ Using the same YAML file used by PODIO to generate C++ code

❖ Be able to read event data files (in ROOT format) written by C++
programs from Julia
❖ Using the UnROOT.jl package, which itself makes use of the XRootD.jl

package (wrapper for the XRootD package) to read from remote files

❖ Later, be able also to write RNTuple files from Julia

10

Main Design Features
❖ All entities are immutable structs for better performance, SoA, GPUs, etc.

❖ POD with basic types and structs, including the relationships (one-to-one and one-to-many)
❖ Object attributes cannot be changed, new instances can be created with Accessors.jl

❖ Constructors have keyword arguments with reasonable default values
❖ New objects are by default not registered, they are “free floating”. Explicit registration or

setting relationships will register them to containers.
❖ Note that operations like register, setting relationships will automatically create a new

instances. The typical pattern is to overwrite the user variable with the new instance, e.g.:

❖ Reading EDM4hep containers from ROOT will result in highly efficient StructArrays
❖ Very efficient access by column and the same time provide convenient views as object instances

11

p1 = MCParticle(...)
p1, d1 = add_daugther(p1, MCParticle(...))

PODIO Generation
❖ Written small Julia script to generate

Julia structs from YAML file
❖ Added a ObjectID to each object to

control its registration state

❖ Relations implemented with ObjectID
and Relation structs with just indices
(isbits() = POD)

❖ Two files: genComponents.jl,
genDatatypes.jl generated that
can be complemented with utility
methods

12

"""
struct MCParticle

 Description: The Monte Carlo particle - based on the lcio::MCParticle.
 Author: F.Gaede, DESY
"""
struct MCParticle <: POD
 index::ObjectID{MCParticle} # ObjectID of itself
 #---Data Members
 PDG::Int32 # PDG code of the particle
 generatorStatus::Int32 # status of the particle as defined by the ...
 simulatorStatus::Int32 # status of the particle from the simulation ...
 charge::Float32 # particle charge
 time::Float32 # creation time of the particle in [ns] wrt. ...
 mass::Float64 # mass of the particle in [GeV]
 vertex::Vector3d # production vertex of the particle in [mm].
 endpoint::Vector3d # endpoint of the particle in [mm]
 momentum::Vector3f # particle 3-momentum at the production vertex..
 momentumAtEndpoint::Vector3f # particle 3-momentum at the endpoint in [GeV]
 spin::Vector3f # spin (helicity) vector of the particle.
 colorFlow::Vector2i # color flow as defined by the generator

 #---OneToManyRelations
 parents::Relation{MCParticle,1} # The parents of this particle.
 daughters::Relation{MCParticle,2} # The daughters this particle.
end

"""
struct SimTrackerHit

 Description: Simulated tracker hit
 Author: F.Gaede, DESY
"""
struct SimTrackerHit <: POD
 index::ObjectID{SimTrackerHit} # ObjectID of itself
 #---Data Members
 cellID::UInt64 # ID of the sensor that created this hit
 EDep::Float32 # energy deposited in the hit [GeV].
 time::Float32 # proper time of the hit in the lab frame in ...
 pathLength::Float32 # path length of the particle in the sensiti ...
 quality::Int32 # quality bit flag.
 position::Vector3d # the hit position in [mm].
 momentum::Vector3f # the 3-momentum of the particle at the hits ...
 #---OneToOneRelations
 mcparticle_idx::ObjectID{MCParticle} # MCParticle that caused the hit.
end

ROOT I/O
❖ Using UnROOT.jl package (equivalent to UpROOT in Python)

❖ Supports (transparently) TTree and RNTuple formats and several versions of PODIO
storage (versions 16.x and 17.x)
❖ data files consist exclusively of ‘collections-of-datatypes’ (e.g. ReconstructedParticles, Vertices, etc.)

❖ The goal is to obtain a StructArray{DataType} of each collection for each event
❖ The exercise consists in mapping the schema in the ROOT file to the actual Julia datatype (using the

Julia introspection or generated code)

❖ XRootD.jl
❖ Wrapper to C++ XRootD providing the File (remote file access) and FileSystem (files and

directories operations) interface

13

Creating SoAs from EDM4hep types
❖ UnROOT.jl provides the leaf arrays

(in a lazy manner) and they are
“mapped” to form SoA of a DataType

❖ Opens the possibility of schema
evolution
❖ filling empty attributes, type change,

re-shaping, etc.

14

using StructArrays

Create a struct array
hits = StructArray{SimTrackerHit}(Tuple(<TLeaf>...))

Access elements
println(hits[1]) # Output: SimTrackerHit(....)

i
n
d
e
x

x y z

c
e
l
l
I
D

E
d
e
p

t
i

m
e

x y z

position momentum

SimTrackerHit #1

SimTrackerHit #2

SimTrackerHit #N

...
.
.
.

SimTrackerHit #3

Reading from a ROOT (TTree) File

15

using EDM4hep
using EDM4hep.RootIO

cd(@__DIR__)

f = "ttbar_edm4hep_digi.root"

reader = RootIO.Reader(f)
events = RootIO.get(reader, "events")

evt = events[1];

hits = RootIO.get(reader, evt, "InnerTrackerBarrelCollection")
mcps = RootIO.get(reader, evt, "MCParticle")

for hit in hits
 println("Hit $(hit.index) is related to MCParticle $(hit.mcparticle.index) with name $(hit.mcparticle.name)")
end

#---Loop over events---
for (n,e) in enumerate(events)
 ps = RootIO.get(reader, e, "MCParticle")
 println("Event #$(n) has $(length(ps)) MCParticles with a charge sum of $(sum(ps.charge))")
end

Hit #1 is related to MCParticle #65 with name pi+
Hit #2 is related to MCParticle #65 with name pi+
Hit #3 is related to MCParticle #65 with name pi+
Hit #4 is related to MCParticle #65 with name pi+
Hit #5 is related to MCParticle #66 with name pi-
Hit #6 is related to MCParticle #66 with name pi-
Hit #7 is related to MCParticle #66 with name pi-
Hit #8 is related to MCParticle #49 with name pi+
Hit #9 is related to MCParticle #49 with name pi+
Hit #10 is related to MCParticle #49 with name pi+
Hit #11 is related to MCParticle #27 with name K-
Hit #12 is related to MCParticle #27 with name K-
Hit #13 is related to MCParticle #27 with name K-
Hit #14 is related to MCParticle #95 with name e-
Hit #15 is related to MCParticle #95 with name e-
...

~ 1500 times faster than Python

StructArray provides an Ergonomic Interface
❖ Storage in memory consists of a

set of column arrays
❖ very fast access by column

❖ Materialize, when requested,
object instances (usually on the
stack) to be able to call user
object methods (multiple
dispatch)
❖ achieving a user friendly access

16

julia> mcps = <get all MCParticle collection>
julia> typeof(mcps)
StructVector{MCParticle, ...}

julia> typeof(mcps[1])
MCParticle

julia> typeof(mcps.charge)
SubArray{Float32, 1, Vector{Float32},
Tuple{UnitRange{Int64}}, true}

julia> length(mcps.charge)
211

julia> mcps[1:2].momentum
2-element StructArray(::Vector{Float32}, ::Vector{Float32},
::Vector{Float32}) with eltype Vector3f:
 (0.5000167,0.0,50.0)
 (0.5000167,0.0,-50.0)

julia> sum(mcps[1:2].momentum)
(1.0000334,0.0,0.0)

StructArray provides an Efficient Interface
❖ Example applying some

transformation to a collection
(e.g. unBoost crossing angle to
the collection of Reconstructed
Particles)
❖ Avoiding the explicit loop you can

get a factor 15 in this example

17

function unBoostCrossingAngle(in, angle)
 ta = tan(angle)
 e = in.energy
 pₓ = in.momentum.x
 e′ = e * sqrt(1 + ta^2) + pₓ * ta
 pₓ′ = pₓ * sqrt(1 + ta^2) + e * ta
 return @set (@set in.momentum.x = pₓ′).energy = e′
end

function unBoostCrossingAngle_loop(in, angle)
 result = StructArray(ReconstructedParticle[])
 ta = tan(angle)
 for p in in
 e = p.energy
 pₓ = p.momentum.x
 e′ = e * sqrt(1 + ta*ta) + pₓ * ta
 pₓ′ = pₓ * sqrt(1 + ta*ta) + e * ta
 push!(result, @set (@set p.momentum.x=pₓ′).energy = e′)
 end
 return result
end

julia> rps = RootIO.get(reader, evt, "PandoraPFOs");

julia> @btime unBoostCrossingAngle($rps, -0.015rad);
 316.449 ns (12 allocations: 2.81 KiB)

julia> @btime unBoostCrossingAngle_loop($rps, -0.015rad);
 4.806 μs (68 allocations: 36.97 KiB)

vector of
energies

vector of px

set the full
column

Package EDM4hep.jl is ready for use!
❖ Install Julia

❖ Install EDM4hep

18

julia> using EDM4hep
julia> using EDM4hep.RootIO
julia> file = "root://eospublic.cern.ch//eos/experiment/fcc/ee/generation/DelphesEvents/winter2023/IDEA/
p8_ee_ZZ_ecm240/events_000189367.root"
julia> reader = RootIO.Reader(file)
┌───────────────┬───┐
│ Atribute │ Value │
├───────────────┼───┤
│ File Name(s) │ root://eospublic.cern.ch//eos/experiment/fcc/prod/fcc/ee/test_spring2024/240gev/ │
│ │ Hbb/CLD_o2_v05/rec/00016562/000/Hbb_rec_16562_1.root │
│ # of events │ 100 │
│ IO Format │ TTree │
│ PODIO version │ 0.99.0 │
│ ROOT version │ 6.28.10 │
└───────────────┴───┘
julia> events = RootIO.get(reader, "events");
julia> evt = events[1];
julia> recps = RootIO.get(reader, evt, "PandoraPFOs");
julia> recps.energy[1:5]
5-element Vector{Float32}:

curl -fsSL https://install.julialang.org | sh

julia -e ‘import Pkg; Pkg.add(“EDM4hep”)’

root://eospublic.cern.ch//eos/experiment/fcc/prod/fcc/ee/test_spring2024/240gev/

Analysis Tools and Algorithms

https://github.com/Moelf/FHist.jl
https://github.com/JuliaHEP/ROOT.jl
https://github.com/JuliaHEP/JetReconstruction.jl

https://github.com/Moelf/FHist.jl
https://github.com/JuliaHEP/ROOT.jl
https://github.com/JuliaHEP/JetReconstruction.jl

Event Loop and Analysis functions
❖ The event loop can be explicit

❖ No performance penalty

❖ Event selection cuts are very
visible and natural

❖ Analysis functions are simple to
write using the EDM4hep types
directly

❖ Easy to add utility
functions to the types

20

for evt in events
 nevents += 1

 # get collection of ReconstructedParticles
 recps = RootIO.get(reader, evt, "PandoraPFOs")

 muons_all = filter(x -> abs(x.type) == 13, recps)
 muons_sel = filter(x -> norm(x.momentum) > 20GeV, muons_all)
 ...
 # CUT 1: at least a lepton with at least 1 isolated one
 length(muons_sel) >= 1 && length(muons_iso) > 0 || continue
 data.μ1 += 1
 ...
end

function missingEnergy(ecm, rps, p_cutoff)
 p = -sum(r.momentum for r in rps if pₜ(r) >= p_cutoff)
 e = sum(r.energy for r in rps if pₜ(r) >= p_cutoff)
 ReconstructedParticle(momentum=(p.x, p.y, p.z), energy=ecm-e)
end

pₜ(p::ReconstructedParticle) = √(p.momentum.x^2 + p.momentum.y^2)
θ(p::ReconstructedParticle) = atan(√(p.momentum.x^2+p.momentum.y^2), p.momentum.z)
ϕ(p::ReconstructedParticle) = atan(p.momentum.y, p.momentum.x)

Example: 𝜇 energy resolution

❖ Complete code to compare
reconstructed energy for
selected muons with truth

21

hresolu = H1D("Resolution [GeV]", 100, -5., 5., unit=:GeV)

get_recps = create_getter(reader, “PandoraPFOs"; selection=[:type, ...])
get_mcps = create_getter(reader, "MCParticles"; selection=[:PDG, ...])
get_trks = create_getter(reader, "SiTracks_Refitted"; selection=[:type])
get_links = create_getter(reader, "SiTracksMCTruthLink")

for evt in events
 # Select muons
 recps = unBoostCrossingAngle(get_recps(evt), -0.015rad)
 muons_all = filter(x -> abs(x.type) == 13, recps) # select muons
 muons_sel = filter(x -> norm(x.momentum) > 20GeV, muons_all) # select p > 20 GeV

 # Energy resolution of Reconstructed muons
 mcps = unBoostCrossingAngle(get_mcps(evt), -0.015rad) # MC particles
 trks = get_trks(evt) # Tracks
 links = get_links(evt) # Links Tracks<->MC part
 for muon in muons_sel
 for trk in muon.tracks
 nl = findfirst(x -> x.rec == trk, links) # find the link index
 isnothing(nl) && continue
 push!(hresolu, muon.energy - links[nl].sim.energy)
 end
 end
end
plot(hresolu.hist, title=hresolu.title, cgrad=:plasma)

https://raw.githubusercontent.com/JuliaHEP/EDM4hep.jl/refs/heads/v0-patches/examples/FCC/energy-res-fullsim.jl

Multi-threaded Analysis
❖ Developed mini-framework

to ensure thread safety
❖ The user defines a data

structure and an analysis
function

❖ Each thread works on a subset
of events using its own copy of
the output data

❖ At the end, the results are
‘summed’ automatically

22

@with_kw mutable struct MyData <: AbstractAnalysisData
 nevents::Int64 = 0 # events processed
 μ1::Int64 = 0 # events with 1 muon
 μ2::Int64 = 0 # events with 2 muons
 mμμ::Int64 = 0 # resonance mass cut
 pμμ::Int64 = 0 # ...
 ...
end

function myanalysis!(data::MyData, reader, events)
 for evt in events
 data.nevents += 1

 recps = RootIO.get(reader, evt, "PandoraPFOs")
 recps = unBoostCrossingAngle(recps, -0.015rad)
 muons_all = filter(x -> abs(x.type) == 13, recps)
 muons_sel = filter(x -> norm(x.momentum) > 20GeV, muons_all)
 isos = coneIsolation(0.01, 0.5, muons_sel, recps)
 muons_iso = [x for (x,iso) in zip(muons_sel, isos) if iso < 0.25]

 # CUT 1: at least a lepton with at least 1 isolated one
 length(muons_sel) >= 1 && length(muons_iso) > 0 || continue
 data.μ1 += 1

 # CUT 2 :at least 2 OS leptons, and build the resonance
 length(muons_sel) >= 2 &&
 sum(muons_sel.charge) < length(muons_sel)|| continue
 data.μ2 += 1
 Zs = resonanceBuilder(91GeV, muons_sel)
 ...
 end
 return data
end

events = RootIO.get(reader, “events")
mydata = MyData()
do_analysis!(mydata, myanalysis!, reader, events; mt=true)

Analysis Tools: Histograms, Statistics, Minimizers, etc.

❖ FHist.jl - Fast, error-aware, and
thread-safe 1D/2D/3D histograms

❖ Minuit2.jl - Starting the work to
wrap C++ Minuit2

❖ ROOT.jl - Ongoing wrapping work
to call ROOT from Julia, providing a
user-friendly interface for TTrees
(and RNTuple)

23

#Import the module.
using ROOT

An alias for ROOT
const R = ROOT

Create a ROOT histogram, fill random events, and fit it.
h = R.TH1D("h", "Normal distribution", 100, -5., 5.)
R.FillRandom(h, "gaus")

#Draw the histogram on screen
c = R.TCanvas()
R.Draw(h)

#Fit the histogram wih a normal distribution
R.Fit(h, "gaus")

#Save the Canvas in an image file
R.SaveAs(c, "demo_ROOT.png")

#Save the histogram and canvas demo_ROOT_out.root file.
f = R.TFile!Open("demo_ROOT_out.root", "RECREATE")
R.Write(h)
R.Write(c)
Close(f)

Jet Finding
❖ JetReconstruction.jl implements sequential jet

reconstruction algorithms natively in Julia

❖ Performance is better than Fastjet
❖ Takes advantage of Julia compiler’s native use of

SIMD registers

❖ Better and more flexible ergonomic interfaces
❖ Easier use of experiment specific types

❖ Nice integration with plotting libraries
24

Plotting

https://docs.juliaplots.org/stable/
https://docs.makie.org/dev/

https://docs.juliaplots.org/stable/
https://docs.makie.org/dev/

Visualizations
❖ Plots.jl and Makie.jl are the standard

visualization packages
❖ Different backends (Cairo, OpenGL, etc.)

❖ Makie is particularly good for 3D graphics

❖ They can be integrated (using the
extension mechanism) very easily with
FHist.jl for example

26

using FHist, Plots
h1 = Hist1D(randn(10^3); binedges = -2:0.3:2)
plot(h1)

Makie Data Visualization
❖ Makie is an interactive

data visualization and
plotting ecosystem
❖ Available on Windows,

Linux and Mac

❖ Different back-ends

❖ With recent versions the
time-to-first plot has been
reduced dramatically

27

Using ROOT for data visualization

❖ While waiting to get HEP specific
plotting in Julia, one possible
strategy is to export final data
(histos, dataframes, etc.) to
ROOT to do the data
presentation in there

28

using DataFrames
df = DataFrame(Zcand_m = Float32[],
 Zcand_recoil_m = Float32[],
 Zcand_q = Int32[],
 Zcand_recoil_θ = Float32[]), 0, 0)
for evt in events
 ...
 push!(df, (Zcand_m, Zcand_recoil_m, Zcand_q, Zcand_recoil_θ))
 ...
end
using Parquet2
Parquet2.writefile("m_H-recoil.parquet", data.df)

import ROOT
import pandas as pd

pdf = pd.read_parquet('m_H-recoil.parquet') # engine='pyarrow'
rdf = ROOT.RDF.FromPandas(pdf)

h1 = rdf.Histo1D(("Zcand_m", "Z candidate mass
 [GeV];N_{Events}", 100, 80, 100), "Zcand_m")
c1 = ROOT.TCanvas()
h1.Fit('gaus')
h1.Draw() Python

Julia

Scaling Out

https://docs.julialang.org/en/v1/manual/multi-threading/
https://juliagpu.org/
https://github.com/JuliaParallel/Dagger.jl

https://juliagpu.org/
https://github.com/JuliaParallel/Dagger.jl

MT, Parallel, GPUs,
❖ Built-in multi-threaded support (e.g. @threads, @spawn macros)

❖ Good scalability with low number of cores, GC may became a limitation for many cores

❖ Julia is great for GPU programming
❖ High-level language: higher productivity than vendor toolkits

❖ Compiled language: enables native GPU programming

❖ Parallel framework — Dagger.jl
❖ A framework for parallel computing across all kinds of resources, like CPUs and GPUs,

and across multiple threads and multiple servers

❖ Under active development, not yet production quality
30

using Flux
m = Dense(10,5) |> gpu
x = rand(10) |> gpu
m(x)

ML

Summary
❖ Best-in-class Language: Julia excels in scientific computing with high performance and ease

of use, avoiding the need for multiple languages

❖ EDM4hep Data: The EDM4hep package offers efficient and ready-to-use tools for working
with EDM4hep data files

❖ Mature Ecosystem: Julia’s comprehensive tools and packages support advanced scientific
analysis

❖ HEP-Specific Needs: Further development is still needed (e.g. low-level utilities, ROOT file
writing, minimization tools, graphic recipes, etc.)

❖ Ready Now: Julia is productive and effective for analysis today.

❖ Strong Community: Active support via Slack (#HEP channel), Discourse, YouTube, and the
HSF JuliaHEP activity group

31

https://julialang.org/slack/
https://discourse.julialang.org/
https://www.youtube.com/@TheJuliaLanguage
https://hepsoftwarefoundation.org/activities/juliahep.html

