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Why Julia?
❖ Invented in 2012 at MIT (mostly)

❖ Jeff Bezanson, Stefan Karpinski, Viral B. Shah, Alan Edelman

❖ Design goals and aims
❖ Open source

❖ Speed like C, but dynamic like Ruby/Python

❖ Obvious mathematical notation

❖ General purpose like Python

❖ As easy for statistics as R

❖ Powerful linear algebra like in Matlab

❖ Good for gluing programs together like the shell
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Julia main Features
❖ Easy of use

❖ REPL, notebooks, garbage collected, expressive maths syntax

❖ Fast
❖ Not interpreted. Just ahead of time compiler (powered by LLVM)

❖ Reflexion, meta-programing, threads, vectorization, GPU support, HPC, etc. 

❖ Advanced type system
❖ Powerful and sophisticated type expressions

❖ Multiple dispatch
❖ This allows packages to compose packages without knowing about each other
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The Two Language Problem
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❖ HEP needs a solution to the Two Language Problem
❖ C++ is fast but complex (and every day becoming more complex)

❖ Python is nice and easy but very slow (mitigated if you avoid loops)

❖ The community has developed ways to deal with these two 
languages but we pay a price
❖ Interoperability is not always smooth  (e.g. garbage collection side effects)

❖ Awkward constructions (e.g. the C++ strings in the PyRDF) 



Excellent Tooling
❖ Julia has an outstanding package manager

❖ Express package interdependence with as few or 
as many constraints as needed - Project.toml

❖ Preserve an exact environment for reproducibility 
- Manifest.toml (with binary reps)

❖ Easy to create and register your own packages

❖ Semantic versioning universally adopted

❖ Built in profiling and debugging

❖ First class VSCode integration

❖ Easy to use package documentation system
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Rich Ecosystem
❖ More than 10k packages
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What do we need for FCC analysis
❖ Access to the Data

❖ Read access to ROOT files of EDM4hep events in EOS (XRootD protocol)  

❖ Analysis Tools and Algorithms
❖ Availability of a extensive ecosystem of tools (e.g. histogramming, statistics, ML) and 

HEP specific algorithms (e.g. jet finding, flavor tagging)

❖ Plotting
❖ Data visualization specific to HEP common practices

❖ Scaling Out
❖ Multi-core, accelerators (GPUs), multi-nodes, grid and cloud computing,  etc.
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Reading EDM4hep files

https://github.com/peremato/EDM4hep.jl 
https://github.com/JuliaHEP/UnROOT.jl 
https://github.com/JuliaHEP/XRootD.jl

https://github.com/peremato/EDM4hep.jl
https://github.com/JuliaHEP/UnROOT.jl
https://github.com/JuliaHEP/XRootD.jl


The EDM4hep Data Model

❖ Covering the simulation/digitization/reconstruction/analysis domains
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EDM4hep.jl

❖ Generate Julia ‘friendly’ data structures for the EDM4hep data model
❖ Using the same YAML file used by PODIO to generate C++ code

❖ Be able to read event data files (in ROOT format) written by C++ 
programs from Julia
❖ Using the UnROOT.jl package, which itself makes use of the XRootD.jl 

package (wrapper for the XRootD package) to read from remote files  

❖ Later, be able also to write RNTuple files from Julia
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Main Design Features 
❖ All entities are immutable structs for better performance, SoA, GPUs, etc. 

❖ POD with basic types and structs,  including the relationships (one-to-one and one-to-many)  
❖ Object attributes cannot be changed, new instances can be created with Accessors.jl 

❖ Constructors have keyword arguments with reasonable default values
❖ New objects are by default not registered, they are “free floating”. Explicit registration or 

setting relationships will register them to containers.
❖ Note that operations like register, setting relationships will automatically create a new 

instances. The typical pattern is to overwrite the user variable with the new instance, e.g.:

❖ Reading EDM4hep containers from ROOT will result in highly efficient StructArrays
❖ Very efficient access by column and the same time provide convenient views as object instances
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p1 = MCParticle(...) 
p1, d1 = add_daugther(p1, MCParticle(...))



PODIO Generation
❖ Written small Julia script to generate 

Julia structs from YAML file
❖ Added a ObjectID to each object to 

control its registration state

❖ Relations implemented with ObjectID 
and Relation structs with just indices 
(isbits() = POD)

❖ Two files: genComponents.jl, 
genDatatypes.jl generated that 
can be complemented with utility 
methods
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""" 
struct MCParticle 

    Description: The Monte Carlo particle - based on the lcio::MCParticle. 
    Author: F.Gaede, DESY 
""" 
struct MCParticle <: POD 
    index::ObjectID{MCParticle}      # ObjectID of itself 
   #---Data Members 
    PDG::Int32                       # PDG code of the particle 
    generatorStatus::Int32           # status of the particle as defined by the ... 
    simulatorStatus::Int32           # status of the particle from the simulation ... 
    charge::Float32                  # particle charge 
    time::Float32                    # creation time of the particle in [ns] wrt. ... 
    mass::Float64                    # mass of the particle in [GeV] 
    vertex::Vector3d                 # production vertex of the particle in [mm]. 
    endpoint::Vector3d               # endpoint of the particle in [mm] 
    momentum::Vector3f               # particle 3-momentum at the production vertex.. 
    momentumAtEndpoint::Vector3f     # particle 3-momentum at the endpoint in [GeV] 
    spin::Vector3f                   # spin (helicity) vector of the particle. 
    colorFlow::Vector2i              # color flow as defined by the generator 

    #---OneToManyRelations 
    parents::Relation{MCParticle,1}  # The parents of this particle. 
    daughters::Relation{MCParticle,2}  # The daughters this particle. 
end

""" 
struct SimTrackerHit 

    Description: Simulated tracker hit 
    Author: F.Gaede, DESY 
""" 
struct SimTrackerHit <: POD 
    index::ObjectID{SimTrackerHit}   # ObjectID of itself 
    #---Data Members 
    cellID::UInt64                   # ID of the sensor that created this hit 
    EDep::Float32                    # energy deposited in the hit [GeV]. 
    time::Float32                    # proper time of the hit in the lab frame in ... 
    pathLength::Float32              # path length of the particle in the sensiti ... 
    quality::Int32                   # quality bit flag. 
    position::Vector3d               # the hit position in [mm]. 
    momentum::Vector3f               # the 3-momentum of the particle at the hits ... 
    #---OneToOneRelations 
    mcparticle_idx::ObjectID{MCParticle}  # MCParticle that caused the hit. 
end



ROOT I/O
❖ Using UnROOT.jl package (equivalent to UpROOT in Python)

❖ Supports (transparently) TTree and RNTuple formats and several versions of PODIO 
storage (versions 16.x and 17.x)
❖ data files consist exclusively of ‘collections-of-datatypes’ (e.g. ReconstructedParticles, Vertices, etc.)

❖ The goal is to obtain a StructArray{DataType} of each collection for each event
❖ The exercise consists in mapping the schema in the ROOT file to the actual Julia datatype (using the 

Julia introspection or generated code)

❖ XRootD.jl
❖ Wrapper to C++ XRootD providing the File (remote file access) and FileSystem (files and 

directories operations) interface

13



Creating SoAs from EDM4hep types
❖ UnROOT.jl  provides the leaf arrays 

(in a lazy manner) and they are 
“mapped” to form SoA of a DataType

❖ Opens the possibility of schema 
evolution
❖ filling empty attributes, type change, 

re-shaping, etc.

14

using StructArrays 

# Create a struct array 
hits = StructArray{SimTrackerHit}(Tuple(<TLeaf>...)) 

# Access elements 
println(hits[1])  # Output: SimTrackerHit(....) 
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Reading from a ROOT (TTree) File
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using EDM4hep 
using EDM4hep.RootIO 

cd(@__DIR__) 

f = "ttbar_edm4hep_digi.root" 

reader = RootIO.Reader(f) 
events = RootIO.get(reader, "events") 

evt = events[1]; 

hits = RootIO.get(reader, evt, "InnerTrackerBarrelCollection") 
mcps = RootIO.get(reader, evt, "MCParticle") 

for hit in hits 
    println("Hit $(hit.index) is related to MCParticle $(hit.mcparticle.index) with name $(hit.mcparticle.name)") 
end 

#---Loop over events------------------------------------------------------------------------------- 
for (n,e) in enumerate(events) 
    ps =  RootIO.get(reader, e, "MCParticle") 
    println("Event #$(n) has $(length(ps)) MCParticles with a charge sum of $(sum(ps.charge))") 
end 

Hit #1 is related to MCParticle #65 with name pi+ 
Hit #2 is related to MCParticle #65 with name pi+ 
Hit #3 is related to MCParticle #65 with name pi+ 
Hit #4 is related to MCParticle #65 with name pi+ 
Hit #5 is related to MCParticle #66 with name pi- 
Hit #6 is related to MCParticle #66 with name pi- 
Hit #7 is related to MCParticle #66 with name pi- 
Hit #8 is related to MCParticle #49 with name pi+ 
Hit #9 is related to MCParticle #49 with name pi+ 
Hit #10 is related to MCParticle #49 with name pi+ 
Hit #11 is related to MCParticle #27 with name K- 
Hit #12 is related to MCParticle #27 with name K- 
Hit #13 is related to MCParticle #27 with name K- 
Hit #14 is related to MCParticle #95 with name e- 
Hit #15 is related to MCParticle #95 with name e- 
...

~ 1500 times faster than Python  



StructArray provides an Ergonomic Interface
❖ Storage in memory consists of a 

set of column arrays
❖ very fast access by column

❖ Materialize, when requested, 
object instances (usually on the 
stack) to be able to call user 
object methods (multiple 
dispatch)
❖ achieving a user friendly access 
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julia> mcps = <get all MCParticle collection> 
julia> typeof(mcps) 
StructVector{MCParticle, ...} 

julia> typeof(mcps[1]) 
MCParticle 

julia> typeof(mcps.charge) 
SubArray{Float32, 1, Vector{Float32}, 
Tuple{UnitRange{Int64}}, true} 

julia> length(mcps.charge) 
211 

julia> mcps[1:2].momentum 
2-element StructArray(::Vector{Float32}, ::Vector{Float32}, 
::Vector{Float32}) with eltype Vector3f: 
 (0.5000167,0.0,50.0) 
 (0.5000167,0.0,-50.0) 

julia> sum(mcps[1:2].momentum) 
(1.0000334,0.0,0.0)



StructArray provides an Efficient Interface
❖ Example applying some 

transformation to a collection 
(e.g. unBoost crossing angle to 
the collection of Reconstructed 
Particles) 
❖ Avoiding the explicit loop you can 

get a factor 15 in this example

17

function unBoostCrossingAngle(in, angle) 
    ta = tan(angle) 
    e = in.energy 
    pₓ = in.momentum.x 
    e′  = e * sqrt(1 + ta^2) + pₓ * ta  
    pₓ′ = pₓ * sqrt(1 + ta^2) + e * ta 
    return @set (@set in.momentum.x = pₓ′).energy = e′ 
end

function unBoostCrossingAngle_loop(in, angle) 
    result = StructArray(ReconstructedParticle[]) 
    ta = tan(angle) 
    for p in in 
        e = p.energy 
        pₓ = p.momentum.x 
        e′ = e * sqrt(1 + ta*ta) + pₓ * ta 
        pₓ′ = pₓ * sqrt(1 + ta*ta) + e * ta 
        push!(result, @set (@set p.momentum.x=pₓ′).energy = e′) 
    end 
    return result 
end

julia> rps = RootIO.get(reader, evt, "PandoraPFOs"); 

julia> @btime unBoostCrossingAngle($rps, -0.015rad); 
  316.449 ns (12 allocations: 2.81 KiB) 

julia> @btime unBoostCrossingAngle_loop($rps, -0.015rad); 
  4.806 μs (68 allocations: 36.97 KiB) 

vector of 
energies

vector of px

set the full 
column



Package EDM4hep.jl is ready for use!
❖ Install Julia

❖ Install EDM4hep
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julia> using EDM4hep 
julia> using EDM4hep.RootIO 
julia> file = "root://eospublic.cern.ch//eos/experiment/fcc/ee/generation/DelphesEvents/winter2023/IDEA/
p8_ee_ZZ_ecm240/events_000189367.root" 
julia> reader = RootIO.Reader(file) 
┌───────────────┬───────────────────────────────────────────────────────────────────────────────────────────┐ 
│ Atribute      │ Value                                                                                     │ 
├───────────────┼───────────────────────────────────────────────────────────────────────────────────────────┤ 
│ File Name(s)  │ root://eospublic.cern.ch//eos/experiment/fcc/prod/fcc/ee/test_spring2024/240gev/          │ 
│               │ Hbb/CLD_o2_v05/rec/00016562/000/Hbb_rec_16562_1.root                                      │ 
│ # of events   │ 100                                                                                       │                                           
│ IO Format     │ TTree                                                                                     │                                            
│ PODIO version │ 0.99.0                                                                                    │                                            
│ ROOT version  │ 6.28.10                                                                                   │                                            
└───────────────┴───────────────────────────────────────────────────────────────────────────────────────────┘ 
julia> events = RootIO.get(reader, "events"); 
julia> evt = events[1]; 
julia> recps = RootIO.get(reader, evt, "PandoraPFOs"); 
julia> recps.energy[1:5] 
5-element Vector{Float32}:

curl -fsSL https://install.julialang.org | sh

julia -e ‘import Pkg; Pkg.add(“EDM4hep”)’

root://eospublic.cern.ch//eos/experiment/fcc/prod/fcc/ee/test_spring2024/240gev/


Analysis Tools and Algorithms

https://github.com/Moelf/FHist.jl 
https://github.com/JuliaHEP/ROOT.jl 
https://github.com/JuliaHEP/JetReconstruction.jl

https://github.com/Moelf/FHist.jl
https://github.com/JuliaHEP/ROOT.jl
https://github.com/JuliaHEP/JetReconstruction.jl


Event Loop and Analysis functions
❖ The event loop can be explicit

❖ No performance penalty

❖ Event selection cuts are very 
visible and natural

❖ Analysis functions are simple to 
write using the EDM4hep types 
directly

❖ Easy to add utility 
functions to the types
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for evt in events 
    nevents += 1 

    # get collection of ReconstructedParticles  
    recps = RootIO.get(reader, evt, "PandoraPFOs") 

    muons_all = filter(x -> abs(x.type) == 13, recps) 
    muons_sel = filter(x -> norm(x.momentum) > 20GeV, muons_all) 
    ... 
    # CUT 1: at least a lepton with at least 1 isolated one 
    length(muons_sel) >= 1 && length(muons_iso) > 0 || continue 
    data.μ1 += 1 
    ... 
end

function missingEnergy(ecm, rps, p_cutoff) 
    p = -sum(r.momentum for r in rps if pₜ(r) >= p_cutoff) 
    e =  sum(r.energy for r in rps if pₜ(r) >= p_cutoff) 
    ReconstructedParticle(momentum=(p.x, p.y, p.z), energy=ecm-e) 
end

pₜ(p::ReconstructedParticle) = √(p.momentum.x^2 + p.momentum.y^2) 
θ(p::ReconstructedParticle) = atan(√(p.momentum.x^2+p.momentum.y^2), p.momentum.z) 
ϕ(p::ReconstructedParticle) = atan(p.momentum.y, p.momentum.x)



Example: 𝜇 energy resolution 

❖ Complete code to compare 
reconstructed energy for 
selected muons with truth
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hresolu = H1D("Resolution [GeV]", 100, -5., 5., unit=:GeV) 

get_recps = create_getter(reader, “PandoraPFOs"; selection=[:type, ...]) 
get_mcps  = create_getter(reader, "MCParticles"; selection=[:PDG, ...]) 
get_trks  = create_getter(reader, "SiTracks_Refitted"; selection=[:type]) 
get_links = create_getter(reader, "SiTracksMCTruthLink")   

for evt in events 
    # Select muons 
    recps = unBoostCrossingAngle(get_recps(evt), -0.015rad) 
    muons_all = filter(x -> abs(x.type) == 13, recps)            # select muons 
    muons_sel = filter(x -> norm(x.momentum) > 20GeV, muons_all) # select p > 20 GeV 

    # Energy resolution of Reconstructed muons 
    mcps = unBoostCrossingAngle(get_mcps(evt), -0.015rad) # MC particles 
    trks = get_trks(evt)                                  # Tracks 
    links = get_links(evt)                                # Links Tracks<->MC part 
    for muon in muons_sel 
        for trk in muon.tracks 
            nl = findfirst(x -> x.rec == trk, links)      # find the link index 
            isnothing(nl) && continue 
            push!(hresolu, muon.energy - links[nl].sim.energy) 
        end 
    end 
end 
plot(hresolu.hist, title=hresolu.title, cgrad=:plasma)

https://raw.githubusercontent.com/JuliaHEP/EDM4hep.jl/refs/heads/v0-patches/examples/FCC/energy-res-fullsim.jl


Multi-threaded Analysis
❖ Developed mini-framework 

to ensure thread safety
❖ The user defines a data 

structure and an analysis 
function

❖ Each thread works on a subset 
of events using its own copy of 
the output data

❖ At the end, the results are 
‘summed’ automatically
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@with_kw mutable struct MyData <: AbstractAnalysisData 
    nevents::Int64 =  0 # events processed  
    μ1::Int64 = 0       # events with 1 muon 
    μ2::Int64 = 0       # events with 2 muons 
    mμμ::Int64 = 0      # resonance mass cut 
    pμμ::Int64 = 0      # ... 
    ... 
end

function myanalysis!(data::MyData, reader, events) 
  for evt in events 
    data.nevents += 1 

    recps = RootIO.get(reader, evt, "PandoraPFOs") 
    recps = unBoostCrossingAngle(recps, -0.015rad) 
    muons_all = filter(x -> abs(x.type) == 13, recps) 
    muons_sel = filter(x -> norm(x.momentum) > 20GeV, muons_all) 
    isos = coneIsolation(0.01, 0.5, muons_sel, recps) 
    muons_iso = [x for (x,iso) in zip(muons_sel, isos) if iso < 0.25] 

    # CUT 1: at least a lepton with at least 1 isolated one 
    length(muons_sel) >= 1 && length(muons_iso) > 0 || continue 
    data.μ1 += 1 

    # CUT 2 :at least 2 OS leptons, and build the resonance 
    length(muons_sel) >= 2 &&  
      sum(muons_sel.charge) < length(muons_sel)|| continue 
    data.μ2 += 1 
    Zs = resonanceBuilder(91GeV, muons_sel) 
    ... 
  end 
  return data 
end

events = RootIO.get(reader, “events") 
mydata = MyData() 
do_analysis!(mydata, myanalysis!, reader, events;  mt=true)



Analysis Tools: Histograms, Statistics, Minimizers, etc.

❖ FHist.jl - Fast, error-aware, and 
thread-safe 1D/2D/3D histograms

❖ Minuit2.jl - Starting the work to 
wrap C++ Minuit2

❖ ROOT.jl - Ongoing wrapping work 
to call ROOT from Julia, providing a 
user-friendly interface for TTrees 
(and RNTuple) 
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#Import the module. 
using ROOT 

# An alias for ROOT 
const R = ROOT 

# Create a ROOT histogram, fill random events, and fit it. 
h = R.TH1D("h", "Normal distribution", 100, -5., 5.) 
R.FillRandom(h, "gaus") 

#Draw the histogram on screen 
c = R.TCanvas() 
R.Draw(h) 

#Fit the histogram wih a normal distribution 
R.Fit(h, "gaus") 

#Save the Canvas in an image file 
R.SaveAs(c, "demo_ROOT.png") 

#Save the histogram and canvas demo_ROOT_out.root file. 
f = R.TFile!Open("demo_ROOT_out.root", "RECREATE") 
R.Write(h) 
R.Write(c) 
Close(f)



Jet Finding
❖ JetReconstruction.jl implements sequential jet 

reconstruction algorithms natively in Julia

❖ Performance is better than Fastjet
❖ Takes advantage of Julia compiler’s native use of 

SIMD registers

❖ Better and more flexible ergonomic interfaces
❖ Easier use of experiment specific types

❖ Nice integration with plotting libraries
24



Plotting

https://docs.juliaplots.org/stable/ 
https://docs.makie.org/dev/

https://docs.juliaplots.org/stable/
https://docs.makie.org/dev/


Visualizations
❖ Plots.jl and Makie.jl are the standard 

visualization packages
❖ Different backends (Cairo, OpenGL, etc.)

❖ Makie is particularly good for 3D graphics

❖ They can be integrated (using the 
extension mechanism) very easily with 
FHist.jl for example
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using FHist, Plots 
h1 = Hist1D(randn(10^3); binedges = -2:0.3:2) 
plot(h1)



Makie Data Visualization
❖ Makie is an interactive 

data visualization and 
plotting ecosystem
❖ Available on Windows, 

Linux and Mac

❖ Different back-ends

❖ With recent versions the 
time-to-first plot has been 
reduced dramatically
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Using ROOT for data visualization

❖ While waiting to get HEP specific 
plotting in Julia, one possible 
strategy is to export final data 
(histos, dataframes, etc.) to 
ROOT to do the data 
presentation in there
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using DataFrames 
df = DataFrame(Zcand_m = Float32[],  
               Zcand_recoil_m = Float32[],  
               Zcand_q = Int32[],  
               Zcand_recoil_θ = Float32[]), 0, 0) 
for evt in events 
  ... 
  push!(df, (Zcand_m, Zcand_recoil_m, Zcand_q, Zcand_recoil_θ)) 
  ... 
end 
using Parquet2 
Parquet2.writefile("m_H-recoil.parquet", data.df) 

import ROOT 
import pandas as pd 

pdf = pd.read_parquet('m_H-recoil.parquet') # engine='pyarrow' 
rdf = ROOT.RDF.FromPandas(pdf) 

h1 = rdf.Histo1D(("Zcand_m", "Z candidate mass 
                 [GeV];N_{Events}", 100, 80, 100), "Zcand_m") 
c1 = ROOT.TCanvas() 
h1.Fit('gaus') 
h1.Draw() Python

Julia



Scaling Out

https://docs.julialang.org/en/v1/manual/multi-threading/ 
https://juliagpu.org/ 
https://github.com/JuliaParallel/Dagger.jl

https://juliagpu.org/
https://github.com/JuliaParallel/Dagger.jl


MT, Parallel, GPUs, ....
❖ Built-in multi-threaded support (e.g. @threads, @spawn macros)

❖ Good scalability with low number of cores, GC may became a limitation for many cores 

❖ Julia is great for GPU programming 
❖ High-level language: higher productivity than vendor toolkits

❖ Compiled language: enables native GPU programming

❖ Parallel framework — Dagger.jl
❖ A framework for parallel computing across all kinds of resources, like CPUs and GPUs, 

and across multiple threads and multiple servers

❖ Under active development, not yet production quality
30

using Flux 
m = Dense(10,5) |> gpu 
x = rand(10) |> gpu 
m(x) 

ML



Summary
❖ Best-in-class Language: Julia excels in scientific computing with high performance and ease 

of use, avoiding the need for multiple languages

❖ EDM4hep Data: The EDM4hep package offers efficient and ready-to-use tools for working 
with EDM4hep data files

❖ Mature Ecosystem: Julia’s comprehensive tools and packages support advanced scientific 
analysis

❖ HEP-Specific Needs: Further development is still needed (e.g.  low-level utilities, ROOT file 
writing, minimization tools, graphic recipes, etc.)

❖ Ready Now: Julia is productive and effective for analysis today.

❖ Strong Community: Active support via Slack (#HEP channel), Discourse, YouTube, and the 
HSF JuliaHEP activity group
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https://julialang.org/slack/
https://discourse.julialang.org/
https://www.youtube.com/@TheJuliaLanguage
https://hepsoftwarefoundation.org/activities/juliahep.html

