

COMPARING THE PERFORMANCE OF THE ANTI-KT AND DURHAM-KT JET CLUSTERING ALGORITHMS IN ZH FULLY HADRONIC FINAL STATE EVENTS

Anna Elizabeth A. Connelly

gratefully acknowledging the contributions of the FCC Infrastructure and Operation WG and sub-WGs, all FCC study teams and the collaborating partners as well as the Bard College Office of Undergraduate Research for funding my trip to CERN 1

Bard

Motivation

Investigating fully hadronic final state events

- **Durham-kt** algorithm in n-jets mode is not infrared safe
- Want to test if another algorithm can improve jet clustering accuracy

Durham-kt n-jets– $d_{ij}= 2 \min(E_i^2, E_j^2)(1 - \cos \theta_{ij})$ Recombine smallest d_{ij} Algorithm stops when there are *n*-jets Anti-kt-

 $d_{ij} = 2 \min(E_i^{-2}, E_j^{-2})(1 - \cos \theta_{ij})(1 - \cos R)$ $d_{iB} = E_i^{-2}$ If d_{ij} is smallest combine i and j If d_{iB} is smallest i becomes a jet

Bard

Comparing anti-kt and durham-kt algorithms

- Basic guidance on jet algorithms (& FastJet) for FCC-ee FCC Physics Performance meeting, 27 June 2022, Cacciari, Salem, Soyez
 - Their study looks at **H(bb)Z(vv)** example process
 - anti-kt algorithm with energy recovery shows indistinguishable results from Durham n-jet algorithm in their study
 - apply this method to fully hadronic final state events
 - using **H(bb)Z(cc)** as a sample process

Bard

Anti-kt R=0.4 and 0.7 N jets before recovery

○ FCC

Number of jets

Anti-kt R=1.0 N jets before recovery

Anti-kt R=1.0 event N jets before energy recovery N jets Normalized events 20000 Entries 0.55 Mean 3.88 Std Dev 0.6797 0.5 0.45 0.4 0.35 0.3 0.25 0.2 2.5 3 3.5 4.5 5 5.5 4

BENERGY Bard

Brookhaven

Energy recovery algorithm for anti-kt

- 1. Jets are sorted by energy
- 2. Four highest energy jets are selected
- 3. Each extra jet recombines with high energy jet closest in angle

minimum energy 10 GeV – also applied to Durham-kt for consistency

Once there are four jets – correction applied assuming 240 GeV C.O.M. energy (same correction is applied to Durham-kt jets)

Brookhaven

7

Bard

Comparing reconstructed Higgs mass

- Comparing Durham-kt with anti-kt masses at R=0.4, 0.7, 1.0, and 1.1
- H(bb)Z(cc) sample process
- Events selected to plot have exactly 2 b and 2 c quarks
 - Truth flavor of the jet determined by closest truth quark

R=0.4

Bard

Anti-kt and Excl. Durham-kt Higgs mean mass

R=0.7

ER – Energy recovery

Choosing smaller R for the anti-kt algo results is worse mass resolution

Bard

Anti-kt and Excl. Durham-kt Higgs mean mass

10

Brookhaven

Comparing reconstructed Higgs masses

Mean Higgs mass with anti-kt algorithm and energy recovery and energy correction

Jet Radius	Higgs mass [GeV]	Z mass [GeV]
0.4	129.29	91.39
0.7	126.36	92.53
1.0	125.02	92.06
1.1	124.74	91.82

Excl. Durham n-jet	123.08	92.22
--------------------	--------	-------

Bard

Higgs truth energy and momentum

U.S. DEPARTMENT OF

 (\bigcirc)

Bard

Durham-kt and anti-kt theta-phi event displays

Durham-kt 4-jets mode

anti-kt R=1.0 with energy recovery

Thank you to N. Morange for the initial event display code from *Measurement of the Higgs width* presented at 7th FCC Physics Week

Durham-kt and anti-kt theta-phi event displays

Durham-kt 4-jets mode

anti-kt R=1.0 with energy recovery

ENERGY

14

Conclusions

- The Durham-kt in n-jet mode performs comparably to the anti-kt when jet radius is set to **1.0-1.1**
- Follow up:
 - investigating the edge cases
 - performing a full analysis chain with anti-kt algorithm to see if there is an impact on the limit of the Higgs coupling

Thank you for your attention.

Thank you again to the Bard College

Office of Undergraduate Research.