ML-based Jet Flavor Tagging in Fast and Full Simulation

8th FCC Physics Workshop 16. January 2025 <u>Sara Aumiller</u>, Dolores Garcia, Michele Selvaggi

Why Jet-Flavor Tagging?

Future Colliders

_

Higgs factories for precious measurements

Particles causing jets:

- quarks (u,d,s,c,b)
- gluons (g)
- leptons (τ)

Why use Machine Learning (ML)?

2045?

FUTURE

Stunning improvement of jetflavor tagging through ML over the last decade

Fast & Full Simulation at FCC-ee

Fast simulation

time & computational efficient early-stage feasibility studies

Full simulation

more realistic description of detector concept and reconstruction algorithms

ML-based Jet Flavor Tagging | sara.aumiller@cern.ch

Fast & Full Simulation at FCC-ee

Jet-Flavor Tagging Set-Up

Jet Description

We characterize the **jet constituents**:

Kinematics (3)	Identification (7)	Track displacements (23)
$\log E_{rel}, heta_{rel}, \phi_{rel}$	reco PID, charge, PID flags, (dNdx, ToF for IDEA)	d_0 , z_0 , covariance matrix c_{ij} , SIP in 2D, 3D (& significance), Jet-track distance d_{3D} (& sig.)

Jet Tagging in Fast Simulation

Jet Tagging in Fast Simulation

Jet Description in Full Simulation

We need to **validate the jet description** in **full simulation** comparing it to fast simulation!

 \rightarrow Comparison shows mostly $_5$ good agreement:

Two major differences in full simulation:

- 1. Fake neutrals
- 2. Unassociated tracks to PFOs

(1) Fake neutrals in full sim

Artificially split cluster of high-energy charged particles (at MC level) creates **fake neutral.**

- More neutral hadrons in full than in fast simulation
- Relative angle ϕ of neutral jet constituents shows discrepancy

leading neutral hadronic jet constituents

(2) Unassociated tracks to PFOs $\bigcirc_{\text{CIRCULAR}}^{\text{FUTURE}}$ in full simulation MC charged hadrons $(H \rightarrow b\bar{b})$

Some **charged particles** are wrongly reconstructed as **neutral PFOs** in full sim although the track efficiency is high.

 \rightarrow track-cluster association fails

→ problematic as tracks are crucial for jet flavor tagging

Reconstruction constraint (from pandora): above 5 GeV charged particles must have cluster associated

 \rightarrow reconstruction could be improved

1.0) track efficiency 0 80 track (87.28%) neutral (7.27%)loss (5.45%)0.20.0 10^{0} 10^{-1} 10^{1} $p \; (\text{GeV})$

Full vs. Fast Simulation CLD

Loss in performance in full simulation

e.g. at a misidentification probability of 10^{-2} for *b* vs. *ud*: Efficiency drops from 97% (fast sim) / 90% (full sim)

Improving Full Sim Tagging

- Improve input **data** to neural network
- Use all tracks available!
- Ignore fake neutrals

Idea:

Instead of PFOs (particle flow objects) use

- Tracks for charged particles
- PFOs for neutral particles but check MC PID to avoid double counting

Large improvement:

e.g. at a misidentification probability of 10^{-2} for *b* vs. *ud*: Efficiency improves from 90% to 95% (fast sim: 97%)

Fast vs. track-based Full Sim

ML-based Jet Flavor Tagging | sara.aumiller@cern.ch

Other Studies

- 1. Adding Vertex Information
 - Important for *b* and *c*-tagging
 - Added location and mass of secondary vertices and V0
 - Performance: Does not improve
 - Conclusion: Network learns information on its own
- 2. Using tracks only
 - Resolves the problem of lost tracks in PFO creation
 - Solves the problem of fake neutrals
 - Performance: Good for b-tagging but in other cases not as good as corrected PFO input
 - **Conclusion**: Work on PF algorithm encouraged

log10(jet misid. probability) FullSim CLD b-tagging -0.5added vertex info vs ud vs c -1.0b vs g -1.5work in progress -2.0-2.5-3.00.20.80.40.61.00.0jet tagging efficiency log10(jet misid. probability) FullSim CLD b-tagging -0.5b vs ud track-based FullSim CLD FullSim CLD tracks only vs c -1.0b vs g -1.5work in progress -2.0-2.5-3.00.20.00.40.60.81.0jet tagging efficiency

0.0

Further details in <u>FCC note</u>

We want to make full simulation tagging at CLD **available to everyone** by implementing it to key4hep.

https://github.com/saracreates/JetTagging

We want to make full simulation tagging at CLD **available to everyone** by implementing it to key4hep.

Status:

- Implementation is done! 🎉

- run inference on the key4hep pipeline
- Recreate ROC curves and compare performance
- **Outlook:** Implementing **full life cycle of tagging** for quick adjustments in the future
 - Retrieve jet constituent variables / network input conveniently from key4hep for easy retraining of a neural network
 - Validate whole life cycle
 - Add thorough documentation

https://github.com/saracreates/JetTagging

Special thanks to Brieuc Francois, Thomas Madlener and especially Leonhard Reichenbach

for their support!

Full cycle for the future

- Studied **jet tagging** in full (CLD) and fast (CLD, IDEA) simulation "ystalized two main Take no.
 - Crystalized two main challenges in full simulation:
 - Fake neutrals
 - Unassociated tracks to PFOs
 - Studied options to improve tagging performance in full simulation: improvement of Pandora Particle Flow is curcial
 - Work-in-progress key4hep implementation of CLD full simulation jet tagging for 7 flavors

FUTURE

FullSim CLD

0.6

0.4

jet tagging efficiency

track-based FullSim CLD

0.8

1.0

b-tagging

work in progress

0.2

Backup

From ϕ_{rel} to fake neutrons

- If constituents and jet have similar ϕ, θ then $\phi_{rel} \rightarrow \pm \frac{\pi}{2}$
- High energetic charged particle dominate jet kinematics
- Fake neutron similar angles as charged particle, so also similar angles to jet → peaks in distribution

Multiplicities

Input parameters to the network

Table 1. Set of input variables		
Variable	Description	
Kinematics		
$E_{\rm const}/E_{\rm jet}$	energy of the jet constituent divided by the jet energy	
$ heta_{ m rel}$	polar angle of the constituent with respect to the jet momentum	
$\phi_{ m rel}$	azimuthal angle of the constituent with respect to the jet momentum	
Displacement		
d_{xy}	transverse impact parameter of the track	
d_z	longitudinal impact parameter of the track	
SIP_{2D}	signed 2D impact parameter of the track	
$\mathrm{SIP}_{\mathrm{2D}}/\sigma_{\mathrm{2D}}$	signed 2D impact parameter significance of the track	
SIP_{3D}	signed 3D impact parameter of the track	
$\mathrm{SIP}_{\mathrm{3D}}/\sigma_{\mathrm{3D}}$	signed 3D impact parameter significance of the track	
$d_{ m 3D}$	jet track distance at their point of closest approach	
$d_{ m 3D}/\sigma_{d_{ m 3D}}$	jet track distance significance at their point of closest approach	
$C_{ m ij}$	covariance matrix of the track parameters	
Identification		
\overline{q}	electric charge of the particle	
-m _{t.o.f.}	-m _{t.o.f.} mass calculated from time-of-flight	
-dN/dx	number of primary ionisation clusters along track	
isMuon	if the particle is identified as a muon	
isElectron	if the particle is identified as an electron	
isPhoton	if the particle is identified as a photon	
isChargedHadron	if the particle is identified as a charged hadron	
isNeutralHadron	if the particle is identified as a neutral hadron	

from IDEA fast sim tagging

Comparison of Higgs channels

