

Machine Learning-Based Tracking Algorithm and Particle Flow Reconstruction

Andrea De Vita, Dolores Garcia, Gregor Krzmanc, Brieuc Francois, Michele Selvaggi

Table of Contents

1 FCC

1. Geometric Graph Neural Network Based Track Finder

- From Current Challenges to a Novel Approach
- Insights into the Neural Network Design
- Tracking Efficiency
- Performance Analysis on CLD
- Comparison between CLD and IDEA
- Background Studies on CLD
- Background Studies on IDEA

2. Machine learning-based Particle Flow at the FCC-ee

- Introduction to Particle Flow
- Insights into the Neural Network Design
- Metrics Overview: Building Blocks for Evaluation
- Dataset Jet-like Particle Gun
- Results Energy and Angular Resolution
- Results Reconstructed Mass
- Results Efficiency and Fake Rates
- Results Particle Identification
- 3. Summary and Next Steps

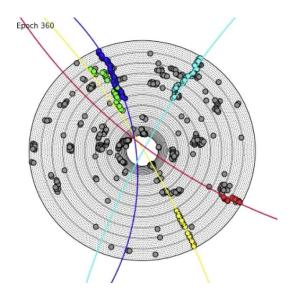
Geometric Graph Neural Network Based Track Finder

From Current Challenges to a Novel Approach

Traditional track finding methods are often complex and detector-specific, limiting their adaptability. To address this, we propose the **Geometric Graph Track Finding (GGTF)** method, an end-to-end detector-agnostic approach.

Key features include:

- **Compatibility** with multiple sub-detectors and tracking technologies.
- Independence from detector geometry and material specifications.
- No reliance on analytical trajectory parameterization.

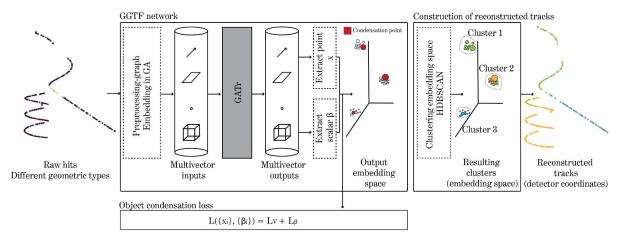


FCC

Insights into the Neural Network Design

Inputs : For each event, a set of hits is collected from various tracking components. The input to the pipeline is the aggregated collection of all hits, denoted as $X=\{X_v, X_i, X_o, ...\}$ (vertex, inner tracker, outer tracker, ...)

Outputs : For each event, a set of track is returned. Each track is a collection of hits from different tracking components.

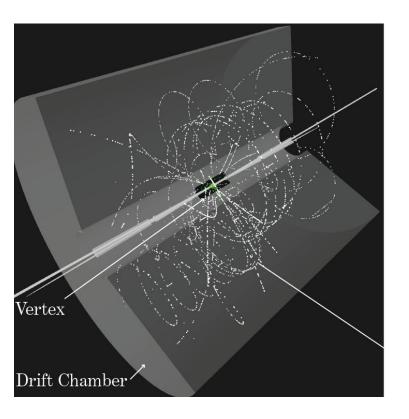


Garcia, D., Francois, B., & Selvaggi, M. (2024). Geometric Graph Neural Network based track finding. CERN.

Tracking Efficiency

Each reconstructed track is matched to a ground truth particle to which it shares the largest number of hits.

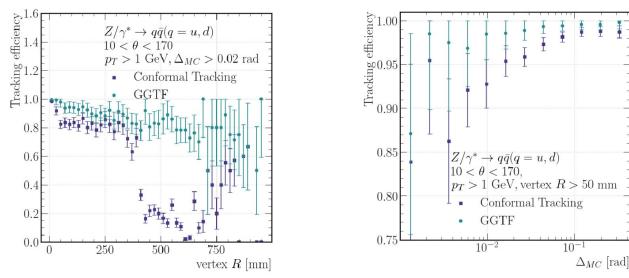
Tracking Efficiency is the probability to reconstruct a track and it can be defined as the percentage of reconstructable charged particles matched to a reconstructed track with at least 4 hits.



Performance Analysis on CLD

Results show that **GGTF is better than the baseline in reconstructing displaced tracks**, thanks to its ability to overcome the limitations of the conformal tracking algorithm, which assumes all tracks originate from a single common point.

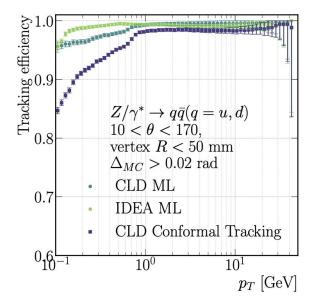
Tracking efficiency improves as the distance to the nearest track increases. **GGTF has good performance in detecting closely spaced tracks**, outperforming the baseline in these cases.

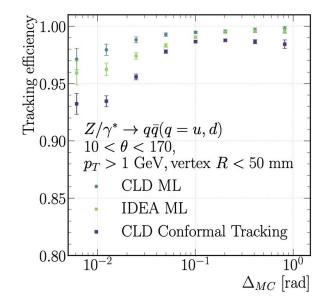


Comparison between CLD and IDEA

Without background, a comparison of CLD and IDEA shows that IDEA achieves better tracking efficiency at low p_T . This is due to the drift chamber design, which allows particles to **traverse a larger portion of the tracker**.

CLD, on the other hand, ensures better identification in the case of **closely spaced tracks**.





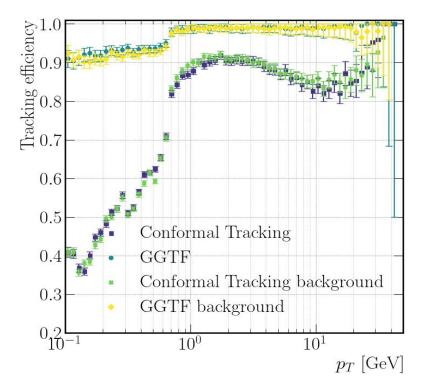
Background Studies on CLD

The results comparing the CLD with and without background show that the **same tracking performance** can be achieved.

This result is valid for both conformal tracking and GGTF and it confirms that tracking efficiency is higher with GGTF over the entire p_{T} range.

Tracking Efficiency : the percentage of reconstructable charged particles with both ratios, the track hit purity and the track hit efficiency, above 50%.

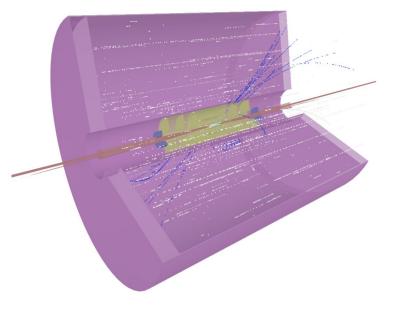
Number of fake tracks : 5.37% (ML) and 5.47% (CT)



Background Studies on IDEA

Future studies will evaluate tracking performance with background on IDEA, focusing on challenges posed by **low-energy noise particles** in the drift chamber.

These particles create horizontal lines of **loopers** with a very small radius. To prevent the identification of false tracks, they must be detected and removed before pattern recognition.



Machine learning-based Particle Flow at the FCC-ee

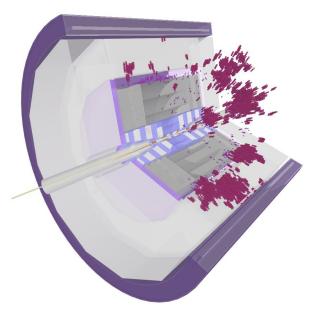
What is Particle Flow?

More details in the Anna Zaborowska's slides from this workshop.

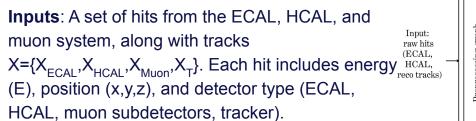
Method to reconstruct **stable** particles in the event (e, γ , μ , charged and neutral hadrons) using the **information** from all sub-detectors.

Main idea: leverage the **most precise sub-detector** that measures a particle:

- trackers for charged particles
- calorimetry for neutral particles.

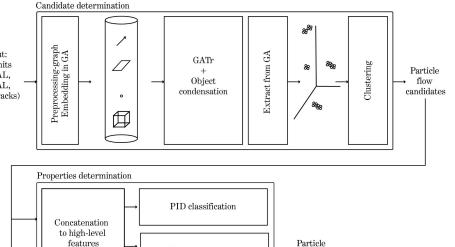


Insights into the Neural Network Design



Outputs: The pipeline performs two main steps:

- 1. Detects particle flow candidates.
- 2. Determines the properties (PID, four-vector) for each candidate.

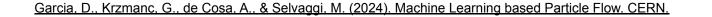


Energy regression

Direction regression

flow

candidates 4-vector



Metrics Overview: Building Blocks for Evaluation

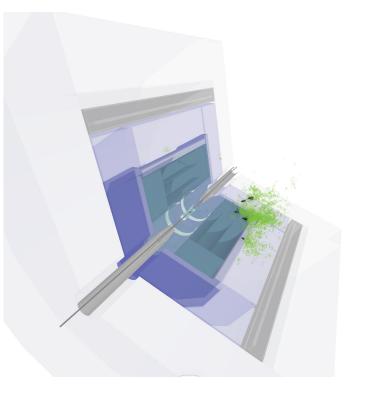
The following features allowing for comparison of MLPF with Pandora are computed.

- Energy resolution is estimated by fitting a Gaussian PDF N(μ , σ) onto the histogram of E_{model}/E_{true} and reporting the variance divided by mean σ/μ .
- **Angular resolution** is estimated by looking at the difference in angles Φ and θ, defined according to the CMS coordinate system.
- **Efficiency**: the fraction of particles that are reconstructed and matched to one of the true showers with respect to the total number of true showers.
- **Fake rate**: the fraction of particles that are reconstructed without matching to a true shower with respect to the total number of true showers.
- **Confusion Matrix** : matrix reporting the PID step performance.

Dataset - Jet-like Particle Gun

- Generates **10–15 stable particles** per event.
- Energy range: 0.5 GeV < E < 50 GeV
- Particles included: π^+ , pi⁺, K_L, n, γ , e⁺, μ , K⁺, p
- Balanced classes: Charged hadrons, Neutral hadrons, Photons, Muons, Electrons.

It offers a controlled approximation of general physics events, excluding many exotic or long-lived particles by default but allowing their inclusion if needed.



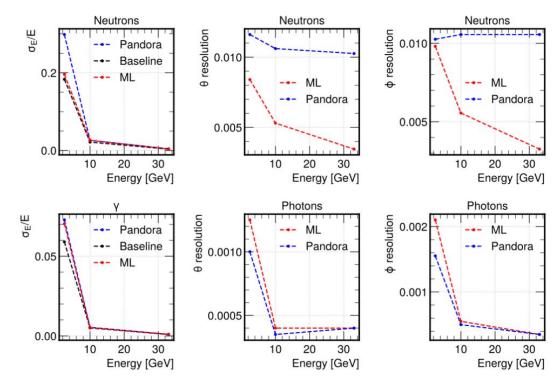
FCC

CERN)

Results - Energy and Angular Resolution

The MLPF shows improved energy resolution for the neutral hadrons.

The MLPF model also shows equivalent angular resolution to Pandora, with improved resolution for neutral hadrons.

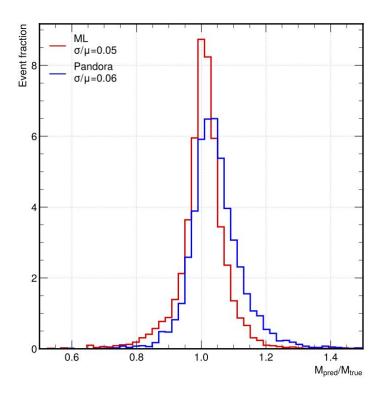


FCC

Results - Reconstructed Mass

These results demonstrate that the ML method outperforms Pandora in mass reconstruction. Specifically, the m_{pred}/m_{true} ratio obtained with the ML method has a mean value closer to 1 compared to Pandora's results.

Additionally, the mass relative resolution σ/μ is smaller when applying the ML method.



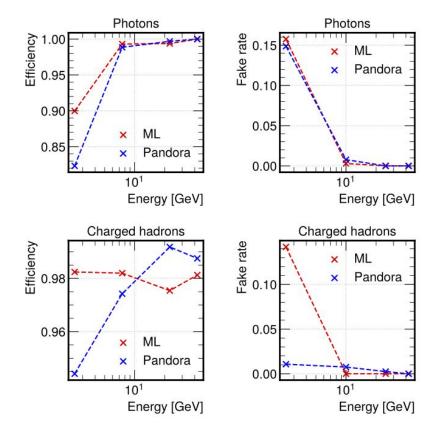
Results - Efficiency and Fake Rates

• Low Energies:

FCC

CERN

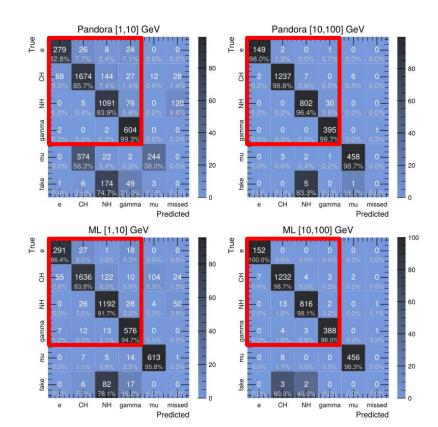
- MLPF achieves **higher efficiency** compared to Pandora.
- **Fake rate** remains similar, expect for charged hadrons (due to fake tracks).
- High Energies:
 - Efficiency decreases due to challenges in clustering close-by showers.



FCC

Results - Particle Identification (I)

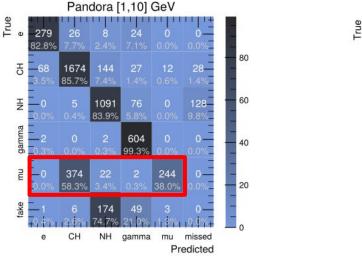
In the electron, charged hadrons, neutral hadrons and gamma region the overall performance of MLPF is compatible with Pandora, but the PID also shows **improved performance for MLPF** with 6% misidentification rate of pandora of neutral hadrons into photons.

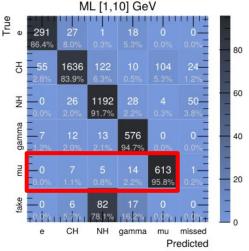


Results - Particle Identification (II)

Muons in the range of 1-10 GeV are correctly classified by the MLPF 95% of the times (38% for pandora).

The analysis highlights challenges with lower-energy muons, which often leave only a **few hits in the muon detectors**. Due to this limited information, the Pandora algorithm tends to misclassify these muons as charged hadrons.





Summary

Summary and Next Steps

Geometric Graph Neural Network Based Track Finder:

- **GGTF Method**: An end-to-end, detector-agnostic approach that shows encouraging results for both CLD and IDEA detector concepts.
- **Background Robustness**: GGTF demonstrates consistent performance with and without background in the CLD detector concept.
- **Next Steps**: Background studies on IDEA to evaluate the effect of drift chamber noise on GGTF performance.

Machine learning-based Particle Flow at the FCC-ee:

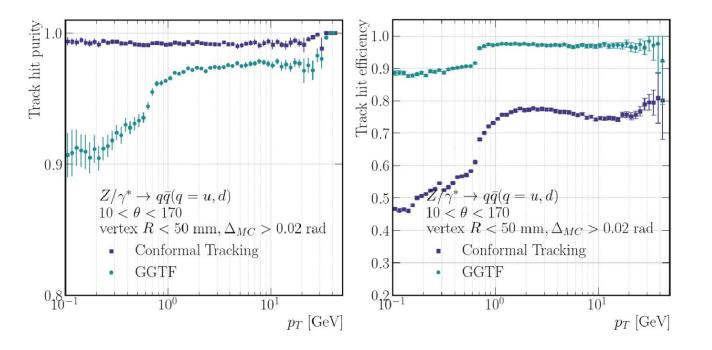
- **MLPF**: An end-to-end, detector-agnostic approach with similar performance to Pandora.
- **Next Steps**: Add the possibility of discarding classifications made by the PID module in the event that the assignment is not sure, but it has ambiguities with other particles.

Thank you for your attention.

∩ FCC

Performance Analysis on CLD

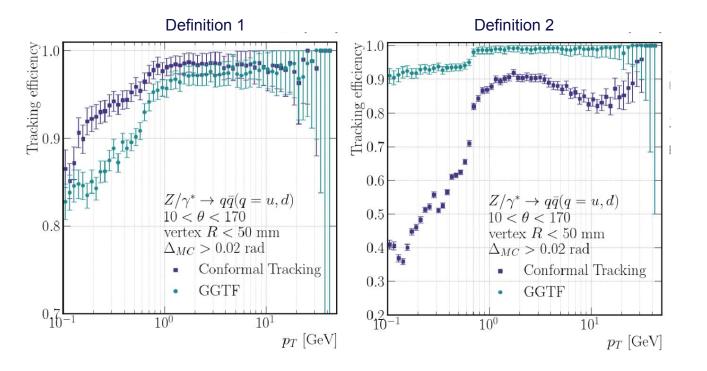
Track Hit Purity & Track Hit Efficiency



FCC

Performance Analysis on CLD

Tracking Efficiency with Definitions 1 and 2



○ FCC

CERN

Performance Analysis on IDEA

Tracking Efficiency & Track Hit Efficiency

