

Background signal from Incoherent Pairs in LumiCal

8th FCC Physcis Workshop Jan 14, 2025

> Mogens Dam Niels Bohr Institute

Start with a check on Beam pipe

New beam pipe is major improvement compared to previous Cu manifold

LumiCal response to 45.6 GeV electrons

Sampling fraction: 0.510/45.6 = 1.1%

IPC particles at $E_{beam} = 45.6 \text{ GeV}$

3989 events GP generated by Andrea Ciarma No minimum momentum cut-off on electrons

E [GeV]

CMS Frame = LumiCal System

In particular, energy ٠

px/pz

Response to IPC (45.6 GeV)

IPC - Distribution of hit cells (45.6 GeV)

Complicated ...

- Many particels hitting front face also at larger radii
- Suppression in particular of particles hitting face
- Higher overall, but in particular at rear of LumiCal
 - -> Divergence in radial coordinate of field

IPC - Distribution of deposited energy (45.6 GeV)

IPC - Distribution of hit cells and energy (45.6 GeV)

cell: radial sector VS layer

Full B field: 2T + anti solenoid

Energy : radial sector VS layer

×10⁻³

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

25

GeV

LumiCal response to 182.5 GeV electrons

sum of cell energies

Expect: 182.5/45.6 * 0.51 GeV = 2.04 GeV

IPC particles at 182.5 GeV

CMS Frame = LumiCal System

E [GeV]

Response to IPC (182.5 GeV)

no. cells (above mip cut) Entries 1000 172.2 Mean Std Dev 31.9 120 Underflow 0 Overflow Integral 999 100 80 60 40 20 0 100 150 200 50 250 300 0

Avg. = 43 MeV 2.1% of 2.06 GeV (182.5 GeV electrons)

Avg. = 172 cells 10.2% of 1690 (182.5 GeV electrons)

IPC - Distribution of deposited energy (182.5 GeV)

cell: radial sector VS layer

Conclusion on IPC

- Very large amount of energy radiated via incoherent pairs
 365 GeV / BX @ 45.6 GeV ; 3.6 TeV / BX @ 182 GeV
- Of that hitting LumiCal

0.8 GeV / BX @ 45.6 GeV ; 4.0 GeV / BX @ 182 GeV
 1.7 % of Bhabha shower ; 2.1 % of Bhabha shower

- 2 T detector field helps to focus these events down below LumiCal acceptance
- "Collision" of 2T field with -3T anti-field creates divergence of particles at rear end of LumiCal
 Hot spot
- However, probably hot front lower corner is a bigger problem.

Possibly need shielding

A few words on Radiative Bhabhas

Helmut Burkhardt

Running BBBrem

- ♦ Running BBBrem
 - \Box Beam energy: $E_{beam} = 45.6 \text{ GeV}$
 - \Box Photon energy cut: E_{γ} / E_{beam} > 0.5
 - t-channel momentum transfer cut off reflecting beam size (36.5 nm):

sqrt(-t) > 5.41079e-09 GeV [A.Ciarma]

- Unweighted events
- $rac{\sigma} = 18.3 \text{ mbarn}$ (10⁶ times LumiCal cross section)

BBBrem result

Electron after photon radiation

8th FCC Physcis Workshop

Running GuineaPig

Program easily available – on lxplus:	
\$ source /cvmfs/sw.hsf.org/key4hep/setup.sh \$ guinea	
Prepare bahbha.ini file	
event index	
px1 py1 pz1 E1 e moving towa	ards positive z
$\mathbf{p}_{\mathbf{x}2}$ $\mathbf{p}_{\mathbf{y}2}$ $\mathbf{p}_{\mathbf{z}2}$ \mathbf{E}_2 \mathbf{e}^+ moving tow	ards negative z
number of photons	

Use accelerator parameters from A. Ciarma

\$ACCELERATOR:: FCCee Z 4IP 29may24 {energy=45.6; particles=21.6; beta x=110; beta y=0.7; sigma z=15600; dist z.1=0; dist z.2=0; sigma x=8775.; sigma y=36.5; offset x=0.0; offset y=0.0; n b=1; f rep=1; angle x=-0.015; charge_sign=-1;

Output

The pairs.dat file contains the same information as the pairs0.dat file, but after tracking (when the particles are "far" from the IP, and have been deflected by the EM field of the bunch they left):	
event index E1 v_{x1} v_{y1} v_{z1} x_1 y_1 z_1	
event index -E2 v_{x2} v_{y2} v_{z2} x_2 y_2 z_2	
The rows in the pairs.dat file are shuffled. They can be sorted using the following shell instruction:	
velocities	

For some reason GuineaPig gives me 21331 Bhabha events in output

1 3.13569 -0.000560813 -7.22316e-05 1 436077 -4550.79 6.22234e+07 -1 0 0 1 -45.6 -6.12452e-05 -6.17759e-05 -1 464130 -3856.85 -6.20907e+07 -1 0 0 2 19.8655 -0.000182926 4.58358e-05 1 457291 2806.47 6.1838e+07 -1 1 1 2 -45.6 -5.90257e-05 -1.65244e-05 -1 458630 -1063.53 -6.18913e+07 -1 1 1

• • •

GuineaPig Result

Preliminary – need checks

Run GuineaPig events through FullSim

Very preliminary – need checks

- Out of 21331 "Bhabha events" in 31 bunch Crossings, only 9 leave signal in LumiCal
- A total of 93 cell hits oberved in 31 bunch crossing with a total of 18 MeV deposited in Si
- ♦ With a sampling fraction of 1.1% this gives about 60 MeV incoming energy per event
 - □ About 0.1% of 45.6 GeV for "real" Bhabha event
 - □ Factor 20 below ICP level