

Beam losses in the IR

G. Broggi^{1,2,3}, A. Abramov², M. Boscolo³, R. Bruce², S. Redaelli²

¹ Sapienza University of Rome, Italy

² CERN, Meyrin, Switzerland

³ INFN-LNF, Frascati, Italy

8th FCC physics workshop, CERN, Meyrin, Switzerland, 14/11/2025

Acknowledgements:

K. Andre, X. Buffat, H. Burkhardt, A. Ciarma, M. Hofer, G. Iadarola, P. Kicsiny, A. Lechner, S. Marin, M. Migliorati, L. Nevay, G. Nigrelli, K. Oide, F. Palla, A. Perillo-Marcone, F. Van der Veken, F. Zimmermann

Outline

Introduction

- FCC-ee beam losses simulations: overview
- FCC-ee collimation system
- Studies and simulations of beam losses in the FCC-ee
 - FCC-ee beam loss scenarios
 - FCC-ee collimation simulations
- Results
 - Generic beam halo losses
 - Beam-gas beam losses
- Outlook and next steps

Outline

Introduction

- FCC-ee beam losses simulations: overview
- FCC-ee collimation system
- Studies and simulations of beam losses in the FCC-ee
 - FCC-ee beam loss scenarios
 - FCC-ee collimation simulations
- Results
 - Generic beam halo losses
 - Beam-gas beam losses
- Outlook and next steps

FCC-ee beam losses simulations: overview

• **Simulations of beam losses** in the FCC-ee are being performed to study:

Optimization of the FCC-ee collimation system design

Minimization of beam losses on sensitive components (e.g. superconducting magnets) Minimization of beam losses in the experimental interaction regions (IRs): can be source of backgrounds

- FCC-ee presents unique challenges:
 - > 17.5 MJ stored beam energy in the **Z mode** (45.6 GeV)
 - New regime for collimation of e± beams (highly destructive beams)
- Two types of collimation currently foreseen for the FCC-ee
 - Beam halo (global) collimation (+ local protection collimators)
 - Synchrotron radiation (SR) collimation upstream of each IP
- Secondary particle shower absorbers under study (CERN FLUKA team)

Comparison of lepton colliders

FCC-ee halo collimation system

- Dedicated halo collimation system in PF
 - Two-stage betatron and off-momentum collimation system in one insertion
 - > Ensure protection of the aperture bottlenecks in different conditions
 - Aperture bottleneck at Z: 14.6σ (H plane), 84.2σ (V plane)
- First collimator design for cleaning performance
 - Ongoing studies to further optimize the collimator design (<u>IPAC'24 paper</u>)
 - Crystal collimation being explored (<u>CHANNELING'24 talk</u>)

(Exp.) $= 9.6 \ km$ IPB (RF) (Inj./Extr. FCC-ee IPJ (Exp.) IPD 4IP Lsss = 1.4 km (Exp.) layout IPH (RF) (Coll $s_{ss} = 2.1 \ km$ IPG Evn Collimation insertion

NamePlaneMaterialLength [cm]Gap [σ]Gap [mm] δ_{cut} [%]

FCC-ee beam halo collimator parameters and settings

				0.06 [0]	• • • • • • • • • • • • • • • • • • •	
TCP.H.B1	Н	MoGr	25	11	6.7	8.9
TCP.V.B1	V	MoGr	25	65	2.4	-
TCS.H1.B1	Н	Мо	30	12	5.0	6.0
TCS.V1.B1	V	Мо	30	75	2.5	-
TCS.H2.B1	Н	Мо	30	12	7.0	22.8
TCS.V2.B1	V	Мо	30	75	3.0	-
TCP.HP.B1	Н	MoGr	25	18.5	4.2	1.3
TCS.HP1.B1	Н	Мо	30	21.5	4.6	2.1
TCS.HP2.B1	Н	Мо	30	21.5	16.8	1.6

Other materials being considered (C-based for TCP, Mo-based for TCS)

14/11/2025

FCC-ee SR collimation system

Synchrotron radiation collimators around the IPs

- 6 collimators and 2 masks upstream of the IPs
- > Designed to reduce detector backgrounds and power loads in the inner beampipe due to photon losses

• More details in <u>K. Andre's talk</u>, this workshop

FCC-ee SR collimators parameters and settings

Name	Plane	Material	Length [cm]	Gap [σ]	Gap [mm]
TCR.H.WL.B1	Н	Inermet180	10	14.0	17.0
TCR.H.C3.B1	V	Inermet180	10	14.0	16.5
TCR.V.C0.B1	V	Inermet180	10	84.2	8.0
TCR.H.C0.B1	Н	Inermet180	10	14.0	16.2
TCR.V.C2.B1	V	Inermet180	10	84.2	8.0
TCR.H.C2.B1	Н	Inermet180	10	14.0	16.0

Inermet180: tungsten heavy alloy

Tertiary collimators for local protection

- Studying different beam loss processes, sizeable beam losses on SR collimators observed
- SR collimators not primarly designed to intercept large beam losses: risk of damages/background
- Two (H+V) tertiary collimators (TCTs) for local protection added
 - Placed ~690 m (H) ~420 m (V) upstream of each IP
 - \succ s-location optimized for optimal phase-advance (multiple of π) between TCTs and \neg
- Collimation hierarchy must be respected:

Name	Plane	Material	Length [cm]	Gap [σ]	Gap [mm]
TCT.H.B1	Н	MoGr	25	13	3.4
TCT.V.B1	V	MoGr	25	80	6.1

FCC-ee tertiary local protection collimator parameters and settings Other C-based materials are being considered

SR collimators aperture bottlenecks

Outline

Introduction

- FCC-ee beam losses simulations: overview
- FCC-ee collimation system
- Studies and simulations of beam losses in the FCC-ee
 - FCC-ee beam loss scenarios
 - FCC-ee collimation simulations
- Results
 - Generic beam halo losses
 - Beam-gas beam losses
- Outlook and next steps

FCC-ee beam loss scenarios

- The FCC-ee Z mode is the current focus: has the highest stored beam energy 17.5 MJ
- Important to identify different beam loss scenarios and define the ones to protect against
- Current selection of beam loss scenarios to study and simulate:
 - Generic beam halo losses Beam losses from interactions with residual gas Beam losses from spent beam due to the collision processes (BB'24 talk – detailed checks ongoing) Beam losses from **Touschek scattering** Most likely negligible at FCC-ee beam energies - Work in progress Interesting in the view of benchmarking simulation tools with operating e+e- colliders Beam losses due to **fast instabilities**: first results in <u>G. Nigrelli's talk</u>, this workshop Beam losses from top-up injection Beam losses from interactions with thermal photons Beam losses from top-up injection Studies planned for 2025
 - Accidental scenarios (inj. failure, asynchronous dump, others): waiting for inputs to set up models

FCC-ee collimation simulations

- FCC-ee presents unique challenges for collimation simulations
 - Synchrotron radiation and magnet strength adjustment (tapering) to compensate it
 - Complex beam dynamics strong sextupoles in the lattice and strong beam-beam effects
 - Detailed aperture and collimator geometry modelling
 - Electron/positron beam particle-matter interactions
 - Large accelerator system 90+ km beamline

• Xsuite + BDSIM (Geant4) coupling (JINST paper)

- Developed for FCC collimation simulations
- Benchmarked against -

lation order: MAD X puAT Sixtrock FLUKA

other simulation codes: MAD-X, pyAT, Sixtrack-FLUKA measured data from proton machines: SPS, LHC

Other tools available (e.g., Xsuite-FLUKA coupling)

Ongoing effort to benchmark Xsuite-BDSIM with data from e+e- colliders (SuperKEKB, DAΦNE)

Outline

Introduction

- FCC-ee beam losses simulations: overview
- FCC-ee collimation system
- Studies and simulations of beam losses in the FCC-ee
 - FCC-ee beam loss scenarios
 - FCC-ee collimation simulations

Results

- Generic beam halo losses
- Beam-gas beam losses
- Outlook and next steps

Generic beam halo losses

- «Generic beam halo» beam loss scenario
 - Specify a minimum beam lifetime that must be sustained during normal operation - preliminary specification of a 5 min lifetime
 - Assume a slow loss process halo particles always intercepted by the primary collimators
 - Loss process not simulated: all particles start impacting a collimator from the collimator edge to a maximum impact parameter b_{max} (*direct halo*)
 - > Currently assuming $b_{max} = 1 \ \mu m$
 - > Studies needed to asses the most realistic b_{max} value
 - Impact parameter scans showed monotonically worsening collimation performance with decreasing impact parameters
 - ➢ Particles scattered out from the collimator tracked for a given number of turns (~500), and losses on the aperture are recorded
 → loss maps

Generic beam halo losses: simulation parameters

• FCC-ee Z operation mode

- Clockwise positron beam (B1) 45.6 GeV beam energy
- Initial conditions (SR: synchrotron radiation; BS: beamstrahlung)

$$\varepsilon_x = 0.71 \, nm$$

equilibrium horizontal emittance from SR

$$\varepsilon_y = 1.9 \ pm$$

$$\sigma_z = 15.5 mm$$

equilibrium vertical emittance from SR+BS

equilibrium bunch length from SR+BS

- Equilibrium vertical emittance from SR + BS kept constant with addition of vertical wiggler in the lattice
- Full nonlinear lattice
- Crab-waist
- Detailed aperture and collimator (BDSIM-Geant4) model
- SR emission («quantum» model)
 - Radiation damping
 - Quantum excitations

10 x 10⁶ macroparticles tracked for 500 machine turns

Generic beam halo losses: results

• FCC-ee Z loss map for horizontal (B1H) betatron collimation losses:

- Power loads evaluated assuming a lifetime drop to **5 min**
- Losses well contained in the collimation insertion PF (>99.6%)
- Losses leaking out the collimation insertion PF mostly intercepted by the local protection TCTs
 - > Nearly absence of losses reaching the detector regions / final focus superconducting quadrupoles

Generic beam halo losses: IR beam losses

• FCC-ee Z IR loss maps for horizontal (B1H) betatron collimation losses:

- IR beam losses efficiently intercepted by the local protection TCTs (Pmax ~50 W)
- Dedicated shower simulations needed to assess backgrounds from these beam losses
 - FLUKA IR model + impacting distributions on IR collimators and aperture as input

Beam losses from beam-residual gas interactions

- The interaction between the beam and residual gas in the vacuum chamber is an important aspect to study
 - Can produce distinct beam loss distributions
 - Can be source of lifetime/luminosity degradation and background in the experimental interaction regions
- Pressure profile in the FCC-ee (Z) provided by the vacuum team (85% H₂, 10% CO, 5% CO₂)
 - NEG coated vacuum pipe, 1h beam conditioning at full nominal current (1.27 A)
 - Main focus on beam-gas bremsstrahlung interactions (dominant process in determining beam-gas losses)
 - First preliminary results for beam-gas Coulomb scattering interactions
- Beam-gas elements implemented in Xsuite-BDSIM to model the interaction with residual gas in the vacuum pipe

Beam-gas beam losses: simulation parameters

• FCC-ee Z operation mode

- Clockwise positron beam (B1) 45.6 GeV beam energy
- Initial conditions (SR: synchrotron radiation; BS: beamstrahlung)

$$\varepsilon_x = 0.71 \, nm$$

equilibrium horizontal emittance from SR

$$\varepsilon_y = 1.9 \ pm$$

equilibrium vertical emittance from SR+BS

$$\sigma_z = 15.5 mm$$

equilibrium bunch length from SR+BS

- Equilibrium vertical emittance from SR + BS kept constant with addition of vertical wiggler in the lattice
- Full nonlinear lattice
- Crab-waist
- Detailed aperture and collimator (BDSIM-Geant4) model
- SR emission («quantum» model)
 - Radiation damping
 - Quantum excitations

eBrem: 45x10⁶ macroparticles tracked for 17x10⁶ equivalent turns CoulombScat: 40x10⁶ macroparticles tracked for 17x10⁷ equivalent turns

+ 10000 equispaced (~9 m spacing) beam-gas elements to model beam-gas interactions

FCC-ee Z beam-gas loss map

*1h beam conditioning at full nominal current (1.27 A): pressure is expected to condition down further (up to a factor ~100) over time

• Power loads evaluated considering the estimated beam-gas lifetime τ from the simulations:

- Low power loads (<0.1 W) on the vast majority of elements and minimal cold power loads
- Highest loads on halo collimators (~10-100 W) and SR collimators (~1 W) no show stoppers identified

Beam-gas bremsstrahlung IR losses

• FCC-ee ZIR loss maps for beam-gas bremsstrahlung losses:

- IR beam-gas bremsstrahlung losses efficiently intercepted by the local protection TCTs (Pmax ~30 W)
- Dedicated shower simulations needed to assess backgrounds from these beam losses
 - > FLUKA IR model + impacting distributions on IR collimators and aperture as input

Beam-gas Coulomb scattering IR losses

FCC-ee Z IR loss maps for beam-gas Coulomb scattering losses:

- IR beam-gas Coulomb scattering losses efficiently intercepted by the local protection TCTs (Pmax ~1 W)
- Dedicated shower simulations needed to assess backgrounds from these beam losses
 - > FLUKA IR model + impacting distributions on IR collimators and aperture as input

Outline

Introduction

- FCC-ee beam losses simulations: overview
- FCC-ee collimation system
- Studies and simulations of beam losses in the FCC-ee
 - FCC-ee beam loss scenarios
 - FCC-ee collimation simulations
- Results
 - Generic beam halo losses
 - Beam-gas beam losses
- Outlook and next steps

- Estimated beam-gas bremsstrahlung lifetime ~5 h*
- Estimated beam-gas Coulomb scattering lifetime ~44 h* (PRELIMINARY)
- To be studied in the future: top-up injection, thermal photons, accidental scenarios...
- The impact of these beam losses on **detector backgrounds** need to be assessed:
 - It can't be directly assessed from collimation tracking simulations: dedicated shower simulations are needed ullet

Outlook and next steps

- Simulations of FCC-ee beam loss scenarios ongoing. In this talk:
 - Beam halo losses studied for the most critical Z mode
 - Beam-gas beam losses studied for the most critical Z mode

NO show stoppers identified

*1h beam conditioning at full nominal current (1.27 A): pressure is expected to condition down further (up to a factor ~100) over time

24/10/2024

24/10/2024

FCC-ee collider parameters as of July 30, 2023.							
Beam energy	[GeV]	45.6	80	120	182.5		
Layout		PA31-3.0					
# of IPs	4						
Circumference	[km]		90.65	8816			
Bend. radius of arc dipole [km]		10.021					
Energy loss / turn	[GeV]	0.0391	0.374	1.88	10.29		
SR power / beam	[MW]	50					
Beam current	[mA]	1279	137	26.7	4.9		
Colliding bunches / beam	(11200	1780	380	56		
Colliding bunch population	$[10^{11}]$	2.14	1.45	1.32	1.64		
Hor. emittance at collision ε_x	[nm]	0.71	2.17	0.67	1.57		
Ver. emittance at collision ε_y	[pm]	1.9	2.2	1.0	1.6		
Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$	[pm]	0.85	1.25	0.65	1.1		
Arc cell		Long	90/90	90/90			
Momentum compaction α_p [10 ⁻⁶]		28.6		7.4			
Arc sext families		75		146			
$\beta^*_{x/y}$	[mm]	110 / 0.7	220 / 1	240 / 1	800 / 1.5		
Transverse tunes $Q_{x/y}$		218.158 / 222.200	218.186 / 222.220	398.192 / 398.360	398.148 / 398.216		
Chromaticities $Q'_{x/y}$		0 / +5	0 / +2	0 / 0	0 / 0		
Energy spread (SR/BS) σ_{δ} [%]		0.039 / 0.109	0.070 / 0.109	0.103 / 0.152	0.159 / 0.201		
Bunch length (SR/BS) σ_z	[mm]	5.60 / 15.5	3.46 / 5.09	3.40 / 5.09	1.85 / 2.33		
RF voltage 400/800 MHz	[GV]	0.079 / 0	1.00 / 0	2.08 / 0	2.1 / 9.38		
Harm. number for 400 MHz		121200					
RF frequency (400 MHz) MHz		400.786684					
Synchrotron tune Q_s		0.0288	0.081	0.032	0.089		
Long. damping time	[turns]	1158	219	64	18.3		
RF acceptance	[%]	1.05	1.15	1.8	3.1		
Energy acceptance (DA)	[%]	± 1.0	± 1.0	± 1.6	-2.8/+2.5		
Beam crossing angle at IP	[mrad]	±		15			
Crab waist ratio	[%]	70	55	50	40		
Beam-beam ξ_x/ξ_y^a		0.0022 / 0.097	0.013 / 0.128	0.010 / 0.088	0.066 / 0.144		
Piwinski angle $(\theta_x \sigma_{z,BS}) / \sigma_x^*$		26.4	3.7	5.4	0.99		
Lifetime $(q + BS + lattice)$ [sec]		10000	4000	3500	3000		
Lifetime (lum) ^b [sec]		1330	970	660	650		
Luminosity / IP $[10^{34}/cm^2s]$		141	20	6.3	1.38		
Luminosity / IP (CDR)	$[10^{34}/cm^2s]$	230	28	8.5	1.8		

FCC-ee collider parameters

^aincl. hourglass.

 $^{b} \mathrm{only}$ the energy acceptance is taken into account for the cross section

6

FCC-ee aperture

- Closed orbit tolerance: 250 µm
- Maximum beta-beating: 10%

Aperture bottleneck for Z operation mode

FCC-ee Z full ring pressure profile *1h beam conditioning at full nominal current (1.27 A): pressure is expected to condition down further over time

- Pressure profile for an arc section and for the MDI region provided by the vacuum team (R. Kersevan)*
- Gas species and composition: 85% H₂, 10% CO and 5% CO₂
- Arc section pressure profile repeated multiple times to cover the whole arc length
- Because of the absence of dipoles generating SR the pressure in the straight sections is much lower compared to the pressure in the MDI and in the arcs
- Arc pressure profile merged with the MDI and straight section pressure profiles to get a full ring pressure profile

Arc pressure profile in the FCC-ee

- Provided by the vacuum team (R. Kersevan)
- FCC-ee (Z mode) beam 1 (B1): 45.6 GeV positron beam, 1270 mA current
- Gas species and composition: 85% H₂, 10% CO and 5% CO₂
- Pressure profiles for 1h beam conditioning at full nominal current

MDI pressure profile in the FCC-ee

- Provided by the vacuum team (R. Kersevan)
- FCC-ee (Z mode) beam 1 (B1): 45.6 GeV positron beam, 1270 mA current
- Gas species and composition: 85% H₂, 10% CO and 5% CO₂
- Pressure profiles for 1h beam conditioning at full nominal current

IP

FCC-ee Z beam-gas interactions: interaction effect

- Ionisation, bremsstrahlung and Coulomb scattering produce rather different effects
- Interactions of 45.6 GeV e+ with H, CO and CO2 studied performing BDSIM (Geant4) thin target simulations

Bremsstrahlung (G4StandardEM_SS physics list)

NOTE: Annihilation is currently not considered due to the much lower cross-section

Coulomb scattering (G4StandardEM_SS physics list)

Simulation workflow

• Xsuite-BDSIM simulation tool (already used for FCC-ee collimation studies) with addition of arbitrary number of newly implemented beam-gas elements (based on local gas parameters from FCC-ee full ring pressure profile)

- At each beam-gas element
 - > The mean free path is computed from cross sections and local gas densities
 - Random number compared to mean free path to determine if beam-gas interaction takes place
 - > If interaction takes place, further sampling of which gas species and which interaction type
 - > Kicks in angle and energy, taken from the pre-sampled interactions, applied to particle coordinates

Simulation workflow: more details

• When using Xsuite (Xtrack) to track particles, a random number is sampled for each particle to represent the distance travelled by that particle in units of mean free paths:

 $n_{\lambda} = -\log(random(0,1))$

• The number n_{λ} is then compared with mean free path step $n_{\lambda,ij}$ between two consecutive beam-gas elements

$$n_{\lambda,\,ij} = \frac{\Delta s_{ij}}{\lambda_{tot\,j}}$$

NOTE: interaction takes place at the beam-gas elements, precision can be increased by adding more elements

- $n_{\lambda} n_{\lambda,ij} \leq 0$: interaction \rightarrow a new n_{λ} is sampled for further tracking
- $n_{\lambda} n_{\lambda, ij} > 0$: **NO interaction** $\rightarrow n_{\lambda}$ is updated as $n'_{\lambda} = n_{\lambda} n_{\lambda, ij}$ for further tracking
- When the interaction condition is satisfied, which interaction (eloni, eBrem or CoulombScat) and with which gas (H2, CO or CO2) is decided by sampling among all the possibilities with relative probability given by the crosssections and the local gas densities
- Once the interaction decided, the effect of the interaction is applied to the interacting particle (px -> px + delta_px, py -> py + delta_py, delta -> delta + delta_delta)

