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• The ring impedance can generate an instability that leads the beam to oscillate 

coherently with an exponentially growing amplitude, potentially losing the 

beam within few turns.

• A feedback system is under development to damp the instability. However, 

feedback failures might happen and need to be investigated.

• Effects on machine and detectors need to be understood to avoid damage.

• Collimation system must protect the machine/detectors also in this scenario and 

shouldn’t be damaged by it.

• If not, both collimation and feedback systems must be improved or the beam must 

be dumped before any damage occurs.

Fast instability Introduction
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• Impedance model and intrabeam interactions not simulated, but it 
is under studying within the collective effects group.

• Fast instability modeled by 8 exciters, giving dipole kicks, placed 
along the ring (one per arc, shown as green points). 

• Exciters are synchronized such that the kicks (H/V) are equally 
distributed in phase advances across 90° and 180° (smooth 
change in amplitude within 1 turn).

• The exciter strengths change with time as:

𝑘 =
𝐴0

𝜎𝑥,𝑦
cos 2 𝜋 𝑄𝑥,𝑦 𝑡 𝑒

𝒕

𝝉 , where 𝝉 is the rise time.

• Resulting in betatron oscillations exponentially growing with time.

• Performed with Xsuite-BDSIM simulation tool, as for the other 
collimation studies with combined tracking and scattering routines.

• Beam loss distributions along the ring are produced as outputs.

Simulation setup
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IPA

IPF

IPG

IPJ IPD

IPB

Simulation parameters:

• 𝟓 × 𝟏𝟎𝟓 45.6 GeV electrons

(Z-mode).

• SR (mean model), RF

cavities, magnet tapering. 

• detailed aperture model, 

halo and tertiary 

collimators, SR collimator, 

wiggler.
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• Fit of the amplitude growth to the average 
centroid of the beam.

• Since the instability can start at any point, it 
is relevant to explore the phase 
dependence.

• Exciters shifted along the ring to have four 
different phase advances between the 
first exciter and the primary collimator. 

• 16 different cases have been investigated:

Case studies

5

Rise time 3 𝑡𝑢𝑟𝑛𝑠 6 𝑡𝑢𝑟𝑛𝑠

Horizontal
Δ𝜇0 = 0°, 30°,

60°, 90°
Δ𝜇0 = 0°, 30°,

60°, 90°

Vertical 
Δ𝜇0 = 0°, 30°,

60°, 90°
Δ𝜇0 = 0°, 30°,

60°, 90°

Horizontal: 6 turns

Vertical: 3 turns

𝐴𝑥[𝜎] =
2 𝐽𝑥𝛽𝑥
𝜎𝑥
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HORIZONTAL INSTABILITY
CHARACTERISTICS
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Transverse beam position at primary collimator
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• The beam oscillates coherently in the 

horizontal plane until collimator 

apertures are reached.

H 0° 𝝉 = 𝟑
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Beam intensity
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• Entire beam is lost in few turns.

• Most of the configuration presents a turn where up to ∼ 𝟓𝟎% of the beam is lost. 

• Order of MJ lost across collimators and apertures in one turn.

• The energy lost in first turns might be detected to dump the beam before damages.
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Lossmaps: worst case

9

• Primary particles on tertiary 

collimator →  current collimation 

system in PF cannot intercept 

this fast losses.

• Could be a problem for other 

type of losses with similar timing 

characteristics.

• From turn 19 (𝑬𝒍𝒐𝒔𝒕 ∼ 𝟒𝟎𝟎 𝑱) to 

turn 20 (𝑬𝒍𝒐𝒔𝒕 > 𝟓𝑴𝑱).

• Losses in the aperture (∼ 25%
of total losses) coming from 

secondary particles or scattered 

primaries.

Turn 19 H
0° 𝝉 = 𝟑

Turn 20 H
0° 𝝉 = 𝟑
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Lossmaps: Interaction region (IPG)
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• Significant losses close to the 

IPs, even more than in the 

collimator insertion.

• Possible solution: 

• Shower absorber after 

tertiary collimator to protect 

detectors.

H 0° 𝝉 = 𝟑
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Losses across collimators

11

anchor

• Total loss on same type of collimator shows:

• Primary collimators not always absorb most of the energy lost → primaries on tertiary collimators. 

• SR collimators are efficiently protected by the TCTs → shower absorber nearby IPs.

11

H 0° 𝝉 = 𝟑 H 60° 𝝉 = 𝟔
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VERTICAL INSTABILITY
CHARACTERISTICS
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Transverse beam position at primary collimator
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• The beam oscillate coherently along 

the vertical axis for many turns until 

the dynamic aperture is reached → 

beam distribution blows up.

• Ongoing studies to tighten the vertical 

collimator’s apertures up to the DA (<
30 𝜎).

• First hit in the collimators at turn 21, 

after the blow up.

V 0° 𝝉 = 𝟑
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Beam intensity

14

• Entire beam is lost in few turns.

• Most of the configuration presents a turn where up to ∼ 𝟓𝟎% of the beam is lost. 

• Order of MJ lost across collimators and apertures in one turn.

• Losses are more spread in time due to the beam blow up.
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Lossmaps: worst case
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• Entire beam lost within 

∼ 9(14) turns for 𝜏 = 3 6 .

• First loss at turn 21 

(𝑬𝒍𝒐𝒔𝒕 ∼ 𝟑𝑴𝑱) then turn 22 

(𝑬𝒍𝒐𝒔𝒕 ∼ 𝟓𝑴𝑱).

• Less losses in the aperture 

compared to the horizontal 

case(∼ 20%).

Turn 22 V 0° 𝝉 = 𝟑

Turn 21 V 0° 𝝉 = 𝟑
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Lossmaps: Interaction region (IPJ)
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• Primary particles on tertiary 

collimator (𝑬𝒍𝒐𝒔𝒕 ∼ 𝟏𝑴𝑱).

• Solutions: 

• Shower absorber after 

tertiary collimator to protect 

detectors.

• Tightening of vertical 

collimators apertures 

(ongoing studies).

V 0° 𝝉 = 𝟑
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Losses across collimators
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anchor

• Total loss on same type of collimators shows the same characteristic of the horizontal case:

• Primary collimators not always absorb most of the energy lost → primaries on tertiary collimators. 

• Significant losses in the tertiary collimators, efficiently protecting SR collimators.
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V 0° 𝝉 = 𝟑 V 0° 𝝉 = 𝟔
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Integrated lossmaps over all turns H vs V
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Vertical 0° 3 turns

18

Horizontal 0° 3 turns
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• Fast instability modeled by synchronized kicks placed along the ring with raising 

strength:

• Reproduced exponential growth of betatron oscillation amplitudes. 

• Studied beam loss distributions around the ring and across multiple turns.

• THIS IS A WORK IN PROGRESS, affected by collimation optics updates and impedance 

modeling as well as potential tightening of the vertical collimator cut.

• The fast instability could be dangerous if the feedback system fails.

• Full beam potentially lost within few turns.

• Almost 50% of beam energy lost in one turn, losses of order of MJ in the collimator can 

be expected.

• The effects depend also on the phase advance.

• High losses in tertiary collimators hence nearby experiments.

• This instability could potentially cause damage both at the machine and detectors → further 

investigation is needed.

Conclusions
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• Energy deposition studies → impact distributions on collimators jaws 

provided to the FLUKA team.

• High losses nearby experiments, shower calculation in the detector regions 

are needed.

• Mitigating potential damage: the machine needs to be design such that 

this instability doesn’t occur:

• redundancy in damper system, 

• Interlocks,

• reduced impedance,

• high chromaticity,

• …

Next steps
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Thank you 
for your attention!
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Backup
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Assuming the beam as a single particle of charge 𝑁𝑏𝑒 (no coupling) under the influence of an 
external force(wake fields/impedance) and neglecting the longitudinal motion.

A complex tune shift is generated due to the impedance of the ring Δ𝜔 = 𝑈 − 𝑗𝑉:

• The betatron motion is influenced by such 
impedance.

• The real part of the impedance define
growth/damping rate of the betatron oscillation.

• The instability rise-time is given by:

𝜏𝑥,𝑦 =
1

𝑉𝑥,𝑦
=

4 𝜋𝑄𝑥,𝑦(
𝐸𝑡
𝑒
)

𝐼 𝑐 × {−𝑅𝑒[𝑍𝑥,𝑦(𝜔)}

• If 𝝉 > 𝟎 → betatron oscillations grow 
exponentially.

For more detalies X. Buffat.

Fast instability: Introduction
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24Horizontal: 3 turns

Vertical: 6 turns
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At primary collimator.
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Lossmaps: Time distribution (H)
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Turn 22 H
30° 𝝉 = 𝟔

Turn 21 H
30° 𝝉 = 𝟔
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Turn 23 H
30° 𝝉 = 𝟔

Turn 24 H
30° 𝝉 = 𝟔

Giulia Nigrelli 
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Collimator impact distributions (H)
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anchor

Considering the configuration 𝝁 = 0° 𝝉 = 𝟑:

Impact distributions have been provided to the FLUKA team for 

energy deposition studies.

Note: Axes are with respect to the collimator system.
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Losses at the primary collimator (tcp.h.b1)
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To compare the various cases is useful to look at the losses in the primary with respect to time:

𝝉 = 𝟔 𝝉 = 𝟑
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Losses at the tertiary collimator (tct.h.1.b1)
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To compare the various cases is useful to look at the losses in the primary with respect to time:

𝝉 = 𝟔 𝝉 = 𝟑
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Lossmaps: Time distribution (V)
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Turn 22 V
30° 𝝉 = 𝟔

Turn 21 V
30° 𝝉 = 𝟔
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Turn 23 V
30° 𝝉 = 𝟔

Turn 24 V
30° 𝝉 = 𝟔
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Collimator impact distributions (V)
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For the configuration 𝝁 = 0° 𝝉 = 𝟑:

Impact distributions have been provided to the FLUKA team for energy 

deposition studies.
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Losses at the primary collimator (tcp.v.b1)
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To compare the various cases is useful to look at the losses in the primary with respect to time:

𝝉 = 𝟔 𝝉 = 𝟑
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Losses at the tertiary collimator (tct.v.1.b1)
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To compare the various cases is useful to look at the losses in the primary with respect to time:

𝝉 = 𝟔 𝝉 = 𝟑
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TCP.V.B1 APERTURE 35 SIGMA TCP.V.B1 APERTURE 25 SIGMA

TCP.V.B1 APERTURE 20 SIGMA

TCP.V aperture scan 

TCP.V.B1 APERTURE 15 SIGMA
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𝛿𝑇𝑃 ∼ 30 𝛿𝑆𝑃 ∼ 10
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TCP.V.B1 APERTURE 

35 SIGMA

TCP.V.B1 APERTURE 

25 SIGMA

TCP.V.B1 APERTURE 

20 SIGMA

TCP.V aperture scan: loss across coll

TCP.V.B1 APERTURE 

15 SIGMA
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𝛿𝑇𝑃 ∼ 30 𝛿𝑆𝑃 ∼ 10
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Beam btw 20-35 sigma, out of DA

Out of DA beams 

15/01/2025  8th FCC Physics Workshop Giulia Nigrelli 

Beam btw 20-35 sigma, out of DA
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LLSS common optics 
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H

V

• No significant 

improvements.

• Still see vertical 

blow up once out 

of DA.

• More losses in the 

aperture.


