Compton polarimeters laser system and fit procedures

Aurélien MARTENS (IJCLab Orsay) On behalf of FCC-ee FS EPOL group https://indico.cern.ch/category/8678/

Compton polarimeter initial layout

Acceptable pulse duration/crossing angle

Luminosity fluctuations (pointing)

 \rightarrow Luminosity very sensitive to laser pointing stability for Q-switch laser \rightarrow below 2x10⁻⁴ for modelock laser

Luminosty fluctuations (jitter)

 \rightarrow Jitter or bad timing is not expected to be a major issue for modelock laser

Expected yields (updated)

Table 4: Preliminary laser parameters for pilot and colliding bunches. Note that single bunch charges are different for pilot and colliding bunches.

Illustrative at this stage, actual temporal pattern is flexible

 \rightarrow will be constrained by today's unknowns (actual background level and detector perf.)

Impact on integration

Laser requirements check list

24/7 operable Compton polarimeters (1/beam) with 95% up-time

- Reliable
- Remotely controled
- Versatile (laser intensity, temporal pattern)
- Simplified integration
- Laser access (beam on) for maintenance vs redundancy
- Short laser transport between optical room and IP
- Minimize radiation field delivered to optical elements

Careful evaluation required Pre-TDR Careful integration

Careful integration

High precision polarimetry

- Laser polarization real-tiem monitoring
	- Absolute laser polarization calibration Careful study for pre-TDR
- Minimize number of optical elements
- Minimize environmental fluctuations (Temp, pressure, vibrations)
- Avoid large average laser power
- Homogeneity of electron beam sampling
- Laser beam quality and stability

Compromise with statistics Laser parameters, tunability for systematics Further studies needed

Typical result – fit of distributions Typically obtained in 30s for a single bunch Initial work of N. Munchnoi

Based on measurement of scattered particles transverse distributions (pixelized detectors)

More about detector: Kieffer (previous talk)

Narvaez, EPOL meeting

Fit refinements

Extend calculation over extended range beyond sensitive area

Updated toy study

A toy MonteCarlo procedure is applied (100 experiments, 10⁸ events each

Residual biases (1-5 10⁻⁴) under investigation Combined fit to be investigated

$\frac{\frac{d\sigma^{+}}{dud\varphi}-\frac{d\sigma^{-}}{dud\varphi}}{\frac{d\sigma^{+}}{dud\varphi}+\frac{d\sigma^{-}}{dud\varphi}}=$ **Asymmetry fit (preliminary)**

14/01/2025 FCC Physics week/EPOL parrallel/FCC-ee polarimeters 12

 $\left(\zeta_x \frac{d\sigma_x}{dud\varphi}\right)$ $\frac{d\sigma_0}{dud\varphi} +$

Conclusion & prospects

24/7 operable Compton polarimeters (1/beam) with 95% up-time

High precision polarimetry

Key requirements

Key pre-TDR phase subjects to be investigated:

- Laser robustness on long term
- Laser beam transport design and integration
- Laser polarization real-time monitoring R&D
- high-accuracy laser polarization calibration R&D
- Start to end simulation for e-beam polarization parameters extraction

Current limitations:

- Personnel (detailed simulations, phd or fellows work)
- Hardware (mostly laser related, possibly detector tests)

Conclusion & prospects

High accuracy and precision beam energy measurement with pilots 24/7 operable Compton polarimeters (1/beam)

Physics requirements

Required accuracy of <1ppm

High reproductibility of measurements for various sqrt(s) is critically needed

Extract as much information as possible from physics experiments themselves (crossing angle, luminosity, sqrt(s) spread)

Beam-based measurements in real time, including beams energy with resonant depolarization

24/7 operable measurement of (de-)polarization

Integration

Laser helicity asymmetries

tons E_s = 45.6 GeV, λ_{p} = 532.0 nm, κ = 1.628, P_a=0.25 trons E_n = 45.6 GeV, λ_n = 532.0 nm, κ = 1.628, P_s=0.25 **XYn** 400 **XYe** Y, mm E exid_{/*} Entries 116 $\frac{142}{1356}$ Entries 300 -221.6 \mathbf{r} Mean x Mean x 300 Mean v -2672 Mean y 1232 Std Dev x 1.082 Std Dev x 1121 200 Std Dev 2672 **Std Dev** 1232 200 0.5 100 100 -100 -100 -0.5 -200 -200 -300 -300 -1.5 -209
X, mm -218 -215 -213 -212 -211 -210 400 -217 -216 -214 100 150 200 250 350 $X, \, \text{mm}$ photons E₂ = 45.6 GeV, λ ₂ = 532.0 nm, x = 1.628, P₂=0.25 XYe py XYp_py electrons E₃ = 45.6 GeV, λ _c = 532.0 nm, κ = 1.628, P₁=0.25 **Entries** $\overline{142}$ **Entries** $\frac{116}{ }$ 1232 Mean 1208 Mean 10000 **Std Dev** 1208 **Std Dev** 1232 10000 5000 5000 -5000 -5000 -10000 -10000 $\frac{4}{Y, \text{mm}}$ -1.5 -0.5 1.5 Y, mm

Reproductible and well known laser helicity flip is required

Blondel et al., arXiv:1909.12245

Blondel et al., arXiv:1909.12245

QED corrections

• Studied in details at SLD

Complete order- α^3 calculation of the cross section for polarized Compton scattering

Morris L. Swartz

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 (Received 24 November 1997; published 28 May 1998)

The construction of a computer code to calculate the cross sections for the spin-polarized processes $e^-\gamma$ $\rightarrow e^-\gamma, e^-\gamma\gamma, e^-e^+e^-$ to order α^3 is described. The code calculates cross sections for circularly polarized initial-state photons and arbitrarily polarized initial-state electrons. The application of the code to the SLD Compton polarimeter indicates that the order- α^3 corrections produce a fractional shift in the SLC polarization scale of -0.1% which is too small and of the wrong sign to account for the discrepancy in the Z-pole asymmetries measured by the SLD Collaboration and the CERN LEP Collaborations. $[S0556-2821(98)03413-4]$

Measurement of transverse polarization at FCCee :

 δP photons $\frac{\partial P}{P} \approx 1 \times 10^{-3}$ (0.5×10^{-3}) at 45 (80) GeV δP electrons $\frac{\partial P}{P} \approx 4 \times 10^{-3}$ (10×10^{-3}) at 45 (80) GeV

Measurement of longitudinal polarization at FCCee :

$$
\frac{\delta P}{P} \approx 1 \times 10^{-3}
$$
 at 45 GeV

If and only if laser helicity asymmetries are measured

Magnetic field tolerancing

Many potential sources of 'bending angle' uncertainties (for instance genuine inhomogeneities of B-field, short-/long-term fluctuations of currents, temperatures, alignments)

Over the useful aperture of the magnet:

$$
\frac{\sigma(\int B_{y}dl)}{\int B_{y}dl} \ll 2 \times 10^{-4}
$$

Fringe fields also may affect performance of polarimeter

$$
\int B_x dl \ll \frac{\sigma_y \gamma}{L_2} \frac{mc}{q} \approx 1.1 \times 10^{-4} \text{ T.m and}
$$

$$
\int B_z dl \ll \frac{\sigma_y \gamma}{L_2 \kappa \theta_0} \frac{mc}{q} \approx 3.2 \times 10^{-2} \text{ T.m.}
$$

Nominal vertical field for reference:

$$
\int B_y dl = \theta_0 \gamma \frac{mc}{q} \approx 0.3
$$
 T.m.

By product: angular alignment

$$
\delta_B \ll \frac{\sigma_y \gamma}{L_2 \int B_y dl} \frac{mc}{q} \approx 370 \text{ }\mu\text{rad.}
$$

NB: Requirements not met \rightarrow not a show-stopper but detailed studies required

Physics requirements cont'd

where
$$
\mathcal{A}'_e = -\left(\frac{\mathcal{A}_e - P}{1 - \mathcal{A}_e P}\right)
$$
 with
$$
P = \frac{(P_z)_e - (P_z)_e}{1 - (P_z)_e - (P_z)_e}
$$

$$
P = 2 \times 10^{-5} \implies \frac{(A_{FB}^b)^2 - A_{FB}^b}{A_{FB}^b} = 1.3 \times 10^{-4}
$$

1 Importance of longitudinal

2020 FCC Physics week/EPOL parrallel/FCC-ee polarimeters

Any restal exploration-schemes we see the final regime - after deplated problems in a numerously contained to the material explorati High accuracy longitudinal polarization measurement is needed \rightarrow Naturally small at IPs but with what accuracy ? \rightarrow Measure it !

Compton cross-section

Fig. 1. Tree diagrams for $e^- \gamma \rightarrow e^- \gamma$

$$
x = \frac{2E_0\omega_0}{m^2}(1 + \cos\alpha) \qquad y = \frac{E_\gamma}{E_0}
$$

The Compton cross-section averaged over scattered particles spins:

But small opening angle of scattered particles:

- Electrons \rightarrow spectrometer
- Photons \rightarrow difficult to measure asymmetric distribution of a narrow spot \rightarrow long lever arm needed

SuperKEKB upgrade concept

Laser integration

Some constraints

- Small crossing angles are preferred (cross-section, beam jitters) few mrad typically
- Beams crossing plane neither horizontal nor vertical
- beam impedance
- beam induced currents in metallic parts \leftarrow avoid
- mechanical stability
- ease of maintenance works

Position, pointing control and monitoring Polarisation independent intensity monitoring Optical spectrum monitoring possible

Polarisation monitoring Duplicated at injection Add Position and pointing monitoring R&D needed to reach required perf.

24/7 operable laser system, with full monitoring, remote control

14/01/2025 FCC Physics week/EPOL parrallel/FCC-ee polarimeters 23

Some laser systems

Same oscillator may be used but two different amplification schemes

 $(*)$ crossing angle \sim 2mrad

 $(***)$ related to optical bandwidth \leftarrow constrains resolution of 'direct' energy measurement from polarimeter

(***) Can be increased to typically ~100W (nowadays) but requires operational validation

 $(****)$ not limited by Piwinski contribution \rightarrow can be several degrees without affecting rate

Scattering rates

Involved processes $e\gamma \rightarrow e\gamma$ *,* $e\gamma \rightarrow eee$ *,* $e\gamma \rightarrow e\gamma\gamma$

QED corrections

$$
\frac{d\sigma}{dE'}(E') \cong \frac{d\sigma_0}{dE'}(1+\delta)[1+\mathcal{P}_z\mathcal{P}_{C,las}(A+\Delta A)]
$$

QED corrections<0.001 @ 45 GeV

Need to be eventually included in simulations…

The Compton process

