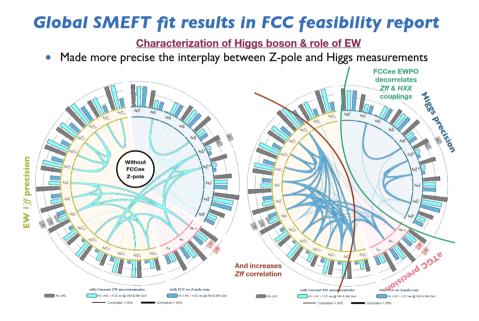
Summary and prospects Physics Programme

8th FCC Physics Workshop, CERN

Guilherme Guedes

The FCC physics programme

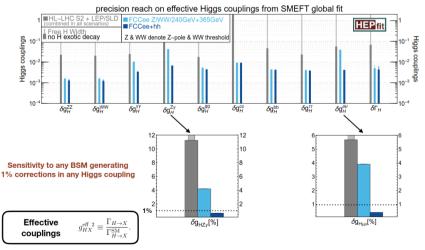
Different paradigm today than before LHC: No no-lose theorems Questions more profound than ever


Moving into the unknown:

Test the SM in spectacular conditions Probe the UV landscape

Our narrative: Integrate a strategy of **precision** (where new physics *cannot* hide) and **high-E** (to probe directly any hint we may find).

The Tera-Z: model agnostic


Spectacular power to probe new physics indirectly through SMEFT!

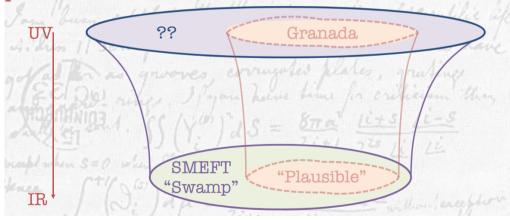
Global SMEFT fit results in FCC feasibility report

Characterization of Higgs boson & role of EW

• Updated to the current baseline (4IP) and luminosities and in combination with FCC-hh (Higgs)

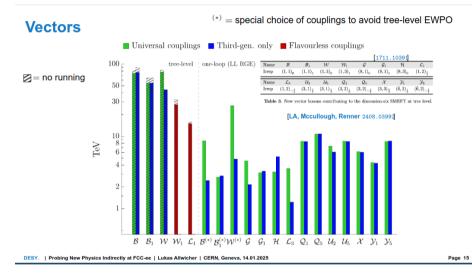
See talk by Jorge De Blas

The Tera-Z: which UV?


Organising the UV Than now leagues Suppose dim-6 SMEFT operators arise at treelevel: $\overline{\mathcal{O}_1(SM)}_{\chi_{ ext{BSM}}} = \mathcal{O}_2(SM)$ $\mathcal{O}_{\mathrm{SMEFT}}$ Is it possible to categorise all possible states? Yes! Effective description of general extensions of the Standard Model: the complete tree-level J. de Blas, J. C. Criado, M. Perez-Victoria, J. Santiago "Granada Dictionary".

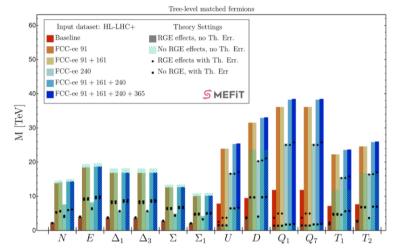
See talk by Matthew Mccullough

The Tera-Z: which UV?

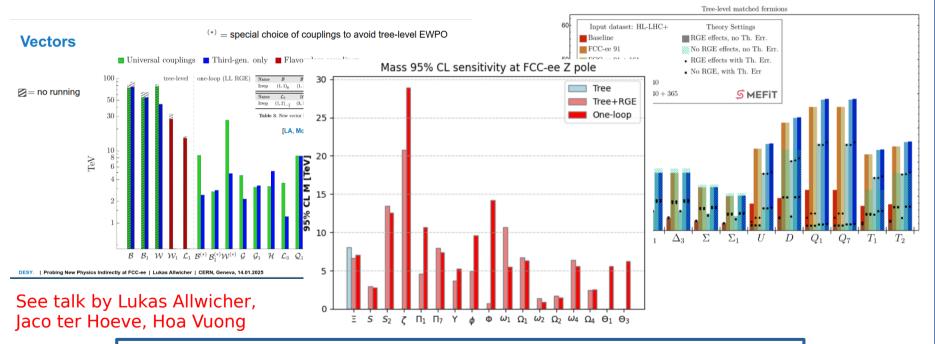

Organising the UV

Proposal: Take the families of operators generically arising from these models as representative of the space of SMEFT generated in all non-tuned UV possibilities.


See talk by Matthew Mccullough



See talk by Lukas Allwicher, Jaco ter Hoeve, Hoa Vuong


EWPO at the FCC-ee can indirectly test these UVs at O(10) TeV

See talk by Lukas Allwicher, Jaco ter Hoeve, Hoa Vuong

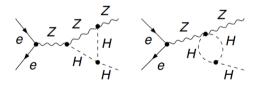
EWPO at the FCC-ee can indirectly test these UVs at O(10) TeV

EWPO at the FCC-ee can indirectly test these UVs at O(10) TeV

What's next?

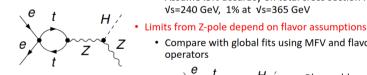
Beyond Granada?

NLO EFT observables Higher-orders? Flavour Connection with hh

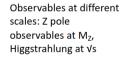


GG, Jose Santiago, Pablo Olgoso, 2303.16965 GG, Pablo Olgoso, 2412.14253

The importance of going NLO


Higgstrahlung at NLO EW SMEFT

- Complete NLO calculation including all dimension-6 operators
 - (~70 SMEFT operators contribute in ~ 35 combinations)
- Sensitive to poorly constrained interactions that first arise at NLO
- One-loop virtual + tree level real photon emission
 - Generate with FeynArts \rightarrow FeynCalc \rightarrow Package-X
 - Renormalize on-shell for M_{W} , M_7 , $\overline{\mathrm{MS}}$ for Wilson Coefficients, $C_i(\mu)$


* Complete results at https://gitlab.com/smeft/eehz

4-fermion operators, C_{ex}

S. Dawson

See talk by Sally Dawson

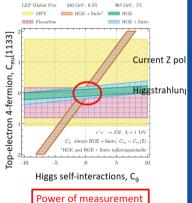
 $e^+e^- \rightarrow ZH$ is window to many new

• Sensitivity to Higgs tri-linear correlated with other contributions

• How do future constraints compare with existing information?

Compare with global fits using MFV and flavor-blind

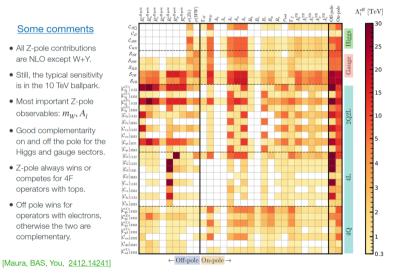
Assume .5% accuracy on total cross section measurement at


• Calculate to $1/\Lambda^2$ so results are linear bands

interactions

√s=240 GeV, 1% at √s=365 GeV

operators


2406.03557

at 2 different energies

S. Dawson

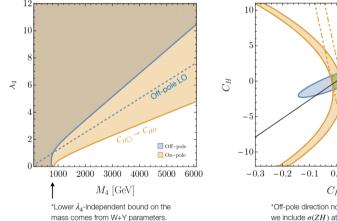
Accuracy complements energy

Accuracy complements energy: EFT summary plot

Custodial quadruplet model

[Maura, BAS, You, 2412.14241]

CQ Model


Off-pole

On-pole

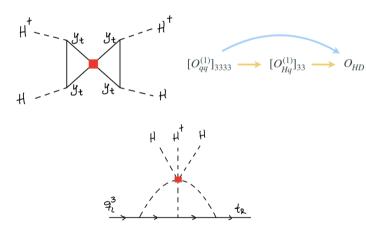
Combined

18

• While $C_{H\square}$ is 1-loop and C_H is tree, the reverse is true in how they affect $\sigma(ZH)$, so they contribute similarly, but with the opposite sign. Again, partial cancellation!

-0.2 - 0.1 0.0 0.1 0.2 0.3 $C_{H\Box}$ *Off-pole direction not fully flat because we include $\sigma(ZH)$ at 240+365 GeV.

See talk by Ben Stefanek


Observables on Z-pole at NLO \sim off-pole at NLO

2-loop effects

The (SM)EFT software project:

Upgrading from "human computers" to computers

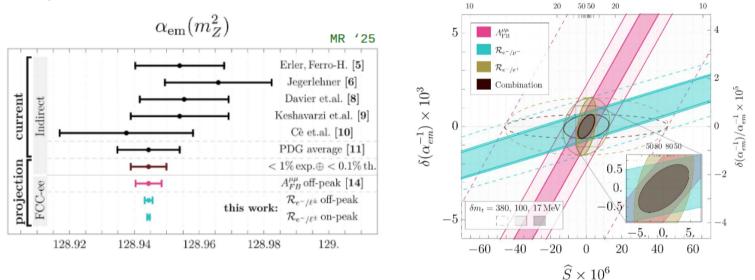
Example of the importance of these corrections:

[Top-Yukawa correction]

See talk by Javier Fuentes-Martin

Some results in the bSMEFT at NLL

$$\frac{dC_i}{d\ln\mu} = \frac{\beta_i^{(1)}}{(16\pi^2)} + \frac{\beta_i^{(2)}}{(16\pi^2)^2} + \dots$$


$$\beta_{C_{HD}}^{(1)} = \left(\frac{9}{2}g_L^2 + 6\lambda - \frac{5}{6}g_Y^2\right)C_{HD} + \frac{20}{3}g_Y^2C_{H\Box} \qquad \beta_{C_{HD}}^{(2)} = \left[\lambda\left(\frac{5}{2}g_Y^2 - \frac{45}{2}g_L^2\right) + \frac{299}{216}g_Y^4 + \frac{41}{2}g_Y^2g_L^2 - \frac{1}{8}g_L^4 - 36\lambda^2\right]C_{HD} + \left(\frac{70}{27}g_Y^4 - \frac{227}{9}g_Y^2g_L^2 - \frac{136}{3}\lambda g_Y^2\right)C_{H\Box} + \left(\frac{32}{27}g_Y^4 - \frac{227}{9}g_Y^2g_L^2 - \frac{136}{3}\lambda g_Y^2\right)C_{H\Box} + \left(32g_Y^3g_L - 68g_Yg_L^3 - 96\lambda g_Yg_L\right)C_{HWB} \right)$$

Enlarged mixing: Most operators mix at NLL

 $g_L^3 - 96\lambda g_Y g_L C_{HWB}$ $+\left(\frac{32}{3}g_Y^4+12g_Y^2g_L^2-48\lambda g_Y^2\right)C_{HB}$ $+28g_V^2g_I^2C_{HW}+26g_V^2g_I^3C_W$

Improving EWPO

See talk by Marc Riembau

 Λ [TeV]

Improving sensitivity fundamental to take advantage of EWPO!

Flavour programme

Flavour precision also probes generic BSM extensions b/c you cannot turn off flavour violation!

So, FCC-ee combines the USPs (for flavour) of B factories & LHC

New opportunities

Doing this not only allows comparable/better measurements at FCC-ee in the familiar channels suited to Belle II and LHC

> It also opens some completely new frontiers i.e. processes we have never measured before

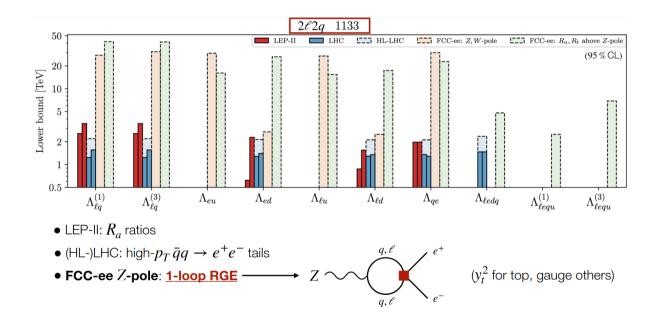
See talk by Joe Davighi

Flavour programme

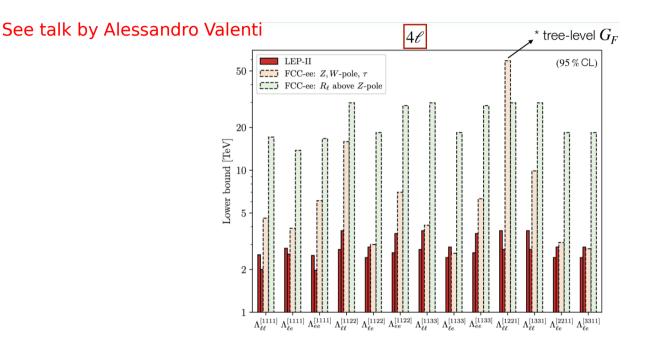
Survey of studies

The following flagship channels have received dedicated studies, with detector simulation (IDEA baseline) and background modelling:

1.	$B \to K^* \tau \tau$	new frontier!
2.	$B_{c/u} \to \tau \nu$	new frontier!
3.	$b \to s \bar{\nu} \nu$	pushing back the Belle II frontier: 10% to 1% precision


See talk by Joe Davighi

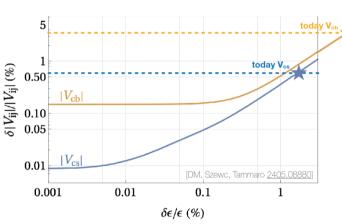
Flavour complementarity with EWPO


See talk by Alessandro Valenti

$$R_b = \frac{\sigma(e^+e^- \to \bar{b}b)}{\sum_{q=u,d,s,c,b} \sigma(e^+e^- \to \bar{q}q)}$$

$$+ R_c, R_s, R_t, R_{\ell}$$

Flavour complementarity with EWPO



Flavour tagging crucial to assess expected FCC-ee precision

CKM measurement

Fixing the efficiencies working point at the FCC (IDEA) one.

See talk by David Marzocca

Parameter	Value	
N_{WW}	3×10^8	
$\operatorname{Br}(W \to \operatorname{had})$	0.6741	
${ m Br}(W o \ell u)$	0.3278	
\mathcal{A}_W	0.9	

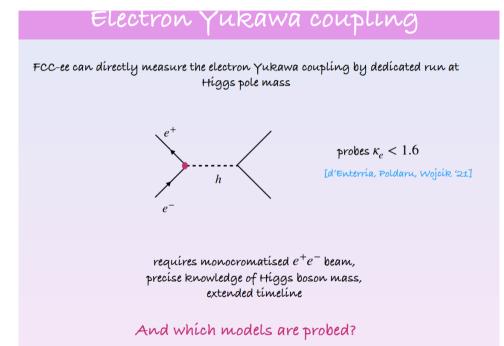
b-jet

c-jet

The precision on V_{cb} saturates at per-mille level of systematic uncertainties, due to limited statistics.

V_{cs} instead is never statistically limited for any reasonable value of systematic uncertainties.

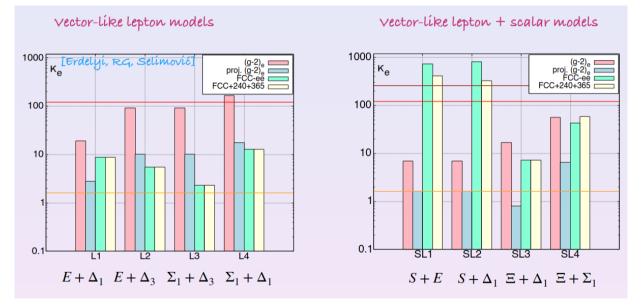
Considerable improvement in V_{cb} and V_{cs} extraction compared to present (and future) measurements are expected, for any systematic uncertainty below the 1% level.


H/Z flavor violating decays

See talk by Arman Korajac

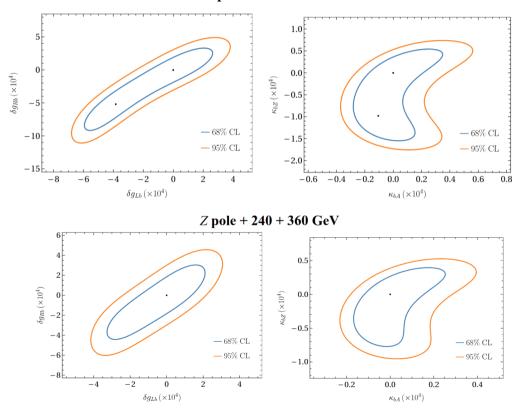
Decay	SM prediction	exp. bound	indir. constr.	FCC-ee bound
$\mathcal{B}(h \to bs)$	$(8.9 \pm 1.5) \cdot 10^{-8}$	0.16	$2 \times 10^{-3} \bigstar$	9.6×10^{-4}
$\mathcal{B}(h \to bd)$	$(3.8 \pm 0.6) \cdot 10^{-9}$	0.16	10^{-3} \star	$5 imes 10^{-3}$
$\mathcal{B}(h \to cu)$	$(2.7 \pm 0.5) \cdot 10^{-20}$	0.16	$2 imes 10^{-2}$ ★	$2.5 imes 10^{-3}$
$\mathcal{B}(Z \to bs)$	$(4.2 \pm 0.7) \cdot 10^{-8}$	2.9×10^{-3}	$6 imes 10^{-8}$ $ullet$	$\mathcal{O}(10^{-6})$
$\mathcal{B}(Z \to bd)$	$(1.8 \pm 0.3) \cdot 10^{-9}$	$2.9 imes 10^{-3}$	$6 imes 10^{-8}$ $ullet$	$\mathcal{O}(10^{-6})$
$\mathcal{B}(Z \to cu)$	$(1.4 \pm 0.2) \cdot 10^{-18}$	$2.9 imes 10^{-3}$	4×10^{-7} \bullet	2.3×10^{-3}

Light fermion Yukawas


See talk by Ramona Groeber

See also talk by Francis Petriello to see how polarization can be important.

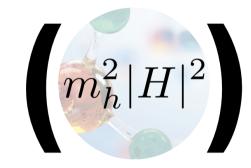
Light fermion Yukawas


See talk by Ramona Groeber

High correlation with (g-2)e

Dipoles at the FCC

Z pole + 240 GeV


See talk by Xiaoze Tan

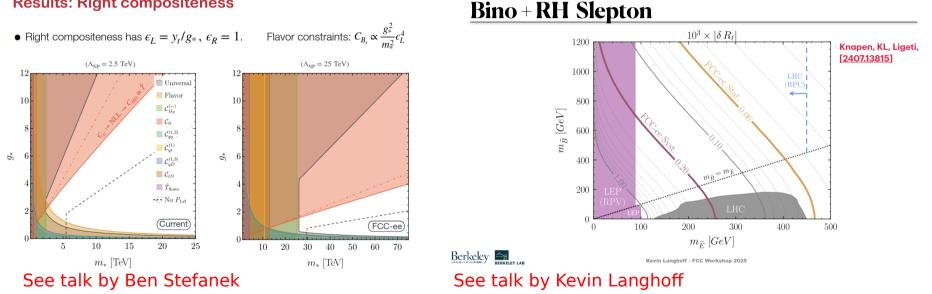
Interesting complementarity between different runs!

See also talk by Michael Pitt on tau dipole.

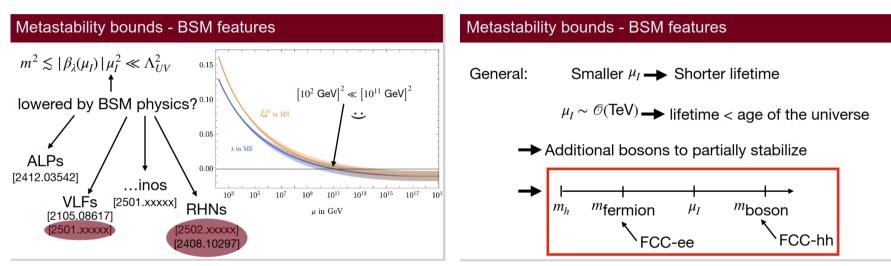
Into more concrete questions

See talk by Raffaele D'Agnolo

See talk by Raffaele D'Agnolo



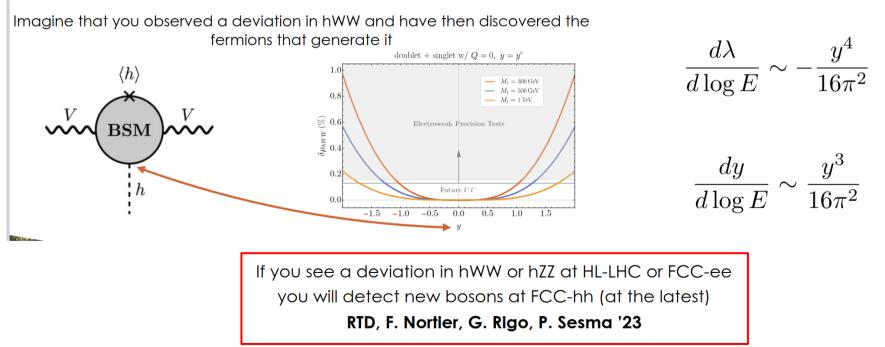
- 3. The Higgs mass and the CC are inputs
- 4. UV/IR Mixing [<u>1909.01365</u>]
- 5. Swampland on steroids


(We tune.) Symmetry-based solutions

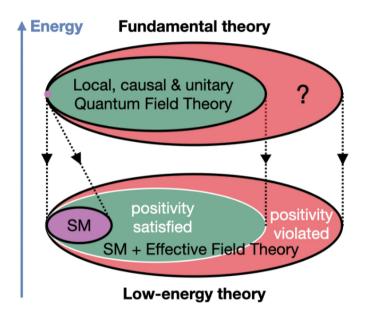
Results: Right compositeness

Not observing anything at the FCC-ee is still valuable information!

Something different.


See talk by Thomas Steingasser

Finding these two d.o.f. could point to a solution to naturalness

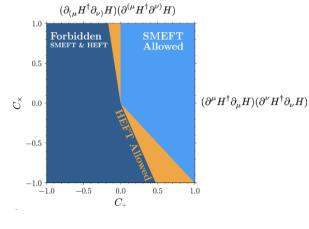

See talk by Raffaele D'Agnolo

Large Yukawa couplings are "bad"

Positivity tests

Future collider potential is largely unexplored

• Important part of the EFT programme beyond dim-6


See talk by Ken Mimasu

Search for **positivity violation**

"Test fundamental principles of QFT in the UV"

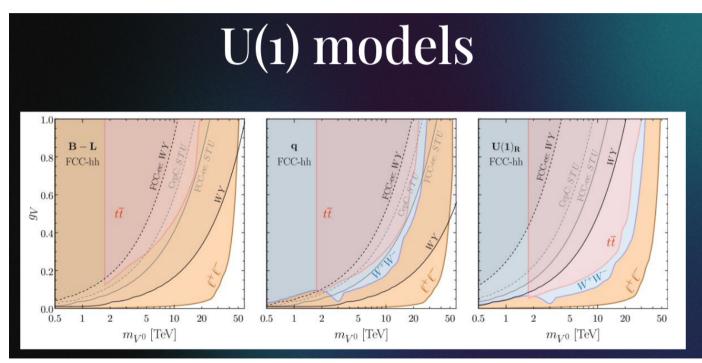
- What kind of exotic UV theory?
- Something revolutionary!
- More down to earth: HEFT vs SMEFT

[Remmen & Rodd; 2412.07827]

BSM particle searches: vectors

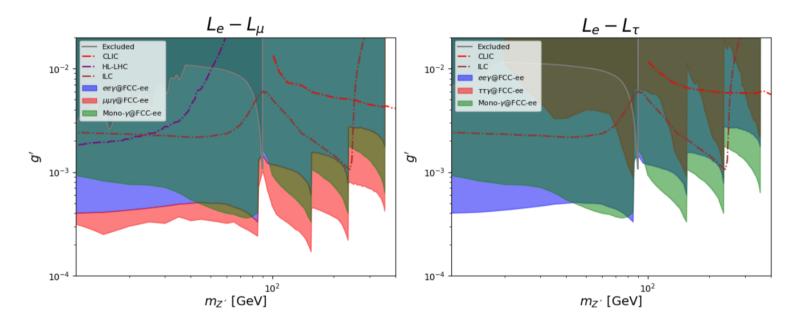
See talk by Riccardo Torre

Simplified models

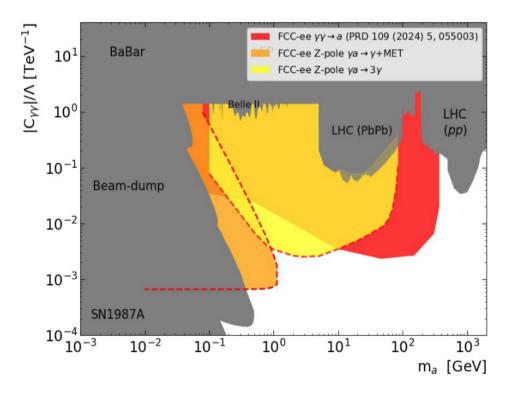

- Heavy Vector Triplet
- $\mathcal{L}_{V} = -\frac{1}{4} D_{[\mu} V_{\nu]}^{a} D^{[\mu} V^{\nu] a} + \frac{m_{V}^{2}}{2} V_{\mu}^{a} V^{\mu a}$ $+ i g_{V} c_{H} V_{\mu}^{a} H^{\dagger} \tau^{a} \overleftrightarrow{D}^{\mu} H + \frac{g^{2}}{g_{V}} c_{F} V_{\mu}^{a} J_{F}^{\mu a}$ $+ \frac{g_{V}}{2} c_{VVV} \epsilon_{abc} V_{\mu}^{a} V_{\nu}^{b} D^{[\mu} V^{\nu] c} + g_{V}^{2} c_{VVHH} V_{\mu}^{a} V^{\mu a} H^{\dagger} H \frac{g}{2} c_{VVW} \epsilon_{abc} W^{\mu \nu a} V_{\mu}^{b} V_{\nu}^{c} .$

• Heavy Vector Singlets

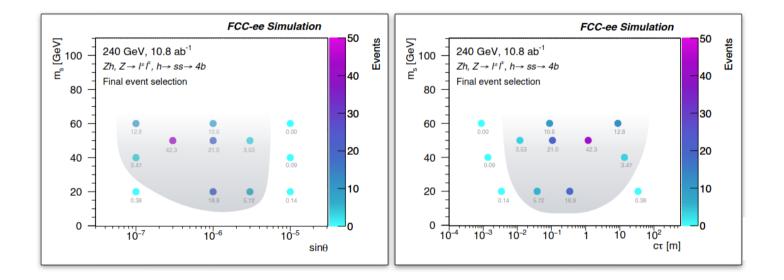
 $\mathcal{L}_{\mathcal{V}^{+}} = -\frac{1}{2} D_{[\mu} \mathcal{V}_{\nu]}^{+} D^{[\mu} \mathcal{V}^{-\nu]} + m_{\mathcal{V}^{+}}^{2} \mathcal{V}_{\mu}^{+} \mathcal{V}^{-\mu}$ $- i \frac{g_{V}}{\sqrt{2}} c_{H}^{+} \mathcal{V}_{\mu}^{+} H^{\dagger} \overset{\mu}{D}^{\mu} \tilde{H} + \frac{g_{V}}{\sqrt{2}} c_{q}^{+} \mathcal{V}_{\mu}^{+} J_{q}^{\mu} + \text{h.c.}$ $+ 2g_{V}^{2} c_{VVHH}^{+} \mathcal{V}_{\mu}^{+} \mathcal{V}^{-\mu} H^{\dagger} H + ig' c_{VVB}^{+} B_{\mu\nu} \mathcal{V}^{+\mu} \mathcal{V}^{-\nu}$ $\mathcal{L}_{\text{mix}} = (ig_{V} c_{VVV}^{+} D_{[\mu} \mathcal{V}_{\nu]}^{-} \mathcal{V}^{0\mu} \mathcal{V}^{+\nu} + \text{h.c.}) + ig_{V} c_{VVV}^{0} \partial_{[\mu} \mathcal{V}_{\nu]}^{0} \mathcal{V}^{+\mu} \mathcal{V}^{-\nu}$ $\mathcal{L}_{\text{mix}} = (ig_{V} c_{VVV}^{+} D_{[\mu} \mathcal{V}_{\nu]}^{-} \mathcal{V}^{0\mu} \mathcal{V}^{+\nu} + \text{h.c.}) + ig_{V} c_{VVV}^{0} \partial_{[\mu} \mathcal{V}_{\nu]}^{0} \mathcal{V}^{+\mu} \mathcal{V}^{-\nu}$ Baker et al., 2407.11117


BSM particle searches: vectors

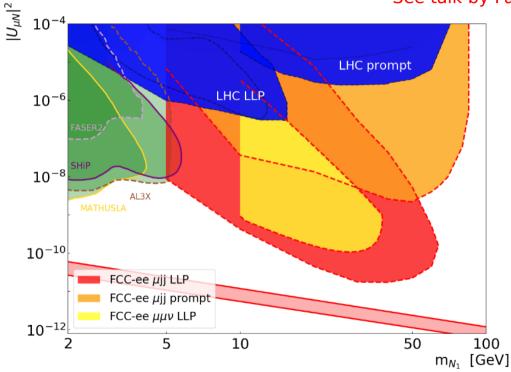
See talk by Riccardo Torre


BSM particle searches: vectors

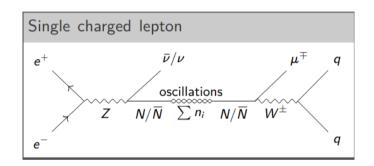
See talk by Jose Zurita


BSM particle searches: ALPs

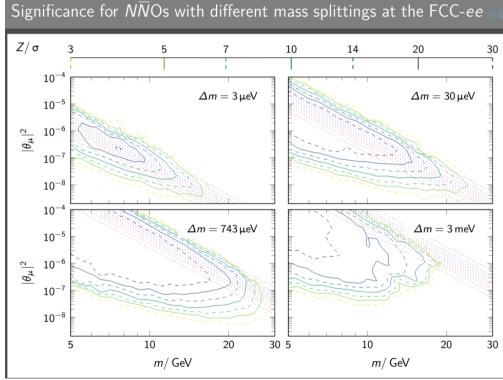
See talk by Giacomo Polesello


BSM particle searches: LLPs

See talk by Axel Gallen



BSM particle searches: HNLs


See talk by Pantelis Kontaxakis

BSM particle searches: HNLs

See talk by Jan Hajer

FCC-hh synergies with ee

See talk by Michelangelo Mangano

Key question to address:

given a discovery at FCC-ee (whether **direct**, *eg ALPs*, *HNL*, *BSM H decays*, ..., or **indirect**, *eg deviations in EWPO or in Higgs properties*), how will FCC-hh contribute to the interpretation of this discovery?

- What information will it add to the study of the properties of new particles observed at FCC-ee?
- How will it uncover the microscopic origin of SM deviations see at FCC-ee?

See talk by Juan Rojo on the power of forward physics facilities.

Conclusions

1. Tera-*Z* has incredible potential to probe general new physics scenarios up to **multiple TeV**.

2. Naturalness explanations will be pushed to the limit.

3. Flavour at FCC offers avenues to test new channels and increase the sensitivity of several others.

4. There is an important complementarity between the different runs and between FCC-ee and FCC-hh to test BSM.

Without a clear direction, the broad scope of the FCC project is fundamental!