

Physics Performance Summary

Patrizia Azzi (Padova), Emmanuel Perez (CERN), Michele Selvaggi (CERN)

8th FCC Physics Week - CERN January 16 2025

Reaching the end of the FCC Feasibility Study

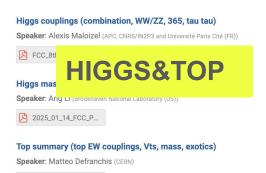
- Conclusion of a long path started in 2020!
- Physics Performance activities exploited "Case Studies" to extract physics motivated detector requirements
- Several experimental analyses have progressed covering new topics (taus, top, etc) and exploring new potential of the FCC-ee Physics Program
- to make this a reality:
 - developed tools for simulation and reconstruction, MC production in coordination with the Software group
 - developed high level tools for **physics analysis**
- A section of the Final Report is devoted to "Detector Requirement" collecting the status of the investigations up to know, with many **new contributions**

Detector Requirement Section

5	Detector requirements
5.1	Introduction
5.2	The current detector concepts
5.3	Measurement of the tracks of charged particles
5.4	Requirements for the vertex detector
5.5	Requirements for charged hadron particle identification
5.6	Requirements for electromagnetic calorimetry
5.7	Requirements for the hadron calorimeter
5.8	Requirements for the muon detector
5.9	Precise timing measurements
5.10	Selected studies with full simulation
5.11	Summary of detector requirements
5.12	Summary and further steps

- Structure similar to the Mid-Term report
- Several "Next Steps" ideas have become finalized studies
- Added new section with Full Simulation and reconstruction results
- Contains answers and request from the comments received by the SAC

Requirements summary Table


	Aggressive	Conservative	Comments	
Beam-pipe	$rac{X}{X_0} < 0.5\%$	$rac{X}{X_0} < 1\%$	${\rm B} \to {\rm K}^* \tau \tau$	
Vertex	$\sigma(d_0) = 3 \oplus 15 / (p \sin^{3/2} \theta)$ μm $\frac{X}{X_0} < 1\%$	_	$\begin{array}{c} \mathbf{B} \to \mathbf{K}^* \tau \tau \\ R_c \end{array}$	
	$\delta L = 5 { m ppm}$	-	$\delta au_ au < 10\mathrm{ppm}$	
Tracking	$rac{\sigma_p}{p} < 0.1\%$ for $\mathcal{O}(50)~{ m GeV}$ tracks	$rac{\sigma_p}{p} < 0.2\%$ for $\mathcal{O}(50){ m GeV}$ tracks	$\delta M_H = 4 \text{ MeV}$ $\delta \Gamma_Z = 15 \text{ keV}$ $Z \rightarrow \tau \mu$	
	t.b.d.	$\sigma_{ heta} < 0.1 \; \mathrm{mrad}$	$\delta\Gamma_{\rm Z}({\rm BES}) < 10{\rm keV}$	
	$rac{\sigma_E}{E} = rac{3\%}{\sqrt{E}}$	$\frac{\sigma_E}{E} = \frac{10\%}{\sqrt{E}}$	$\mathrm{Z} ightarrow u_e ar{ u_e}$ coupling, B physics, ALPs	
ECAL	$\Delta x imes \Delta y = 2 imes 2 \ \mathrm{mm}^2$	$\Delta x \times \Delta y = 5 \times 5 \text{ mm}^2$	au polarization boosted π^0 decays bremsstrahlung recovery	
	$δz = 100 $ μm, $δR_{min} = 10 $ μm ($θ = 20^{\circ}$)	_	alignment tolerance for $\delta \mathcal{L} = 10^{-4}$ with $\gamma \gamma$ event	
HCAL	$rac{\sigma_E}{E} = rac{30\%}{\sqrt{E}}$	$\frac{\sigma_E}{E} = \frac{50\%}{\sqrt{E}}$	$H \rightarrow s \bar{s}, \ c \bar{c}, \mbox{gg, invisible} $H NLs$$	
	$\Delta x imes \Delta y = 2 imes 2 \ \mathrm{mm}^2$	$\Delta x \times \Delta y = 20 \times 20 \ \mathrm{mm}^2$	$H \to s\bar{s}, \; c\bar{c}, gg$	
Muons	low momentum ($p < 1 \text{GeV}$) ID	-	$B_s \to \nu \bar{\nu}$	
Particle ID	3σ K/ π p < 40 GeV	$3\sigma \text{ K/}\pi$ p < 30 GeV	$\mathrm{H} ightarrow \mathrm{s} \mathrm{ar{s}}$ $b ightarrow s u ar{ u}, \ldots$	
LumiCal	tolerance $\delta z = 100 \mu\text{m}, \delta R_{\text{min}} = 1 \mu\text{m}$ acceptance 50-100 mrad		$\delta \mathcal{L} = 10^{-4}$ target (Bhabha)	
Acceptance	100 mrad	_	$- \qquad \qquad e^+e^- \to \gamma\gamma \\ e^+e^- \to e^+e^-\tau^+\tau^-(c\bar{c})$	

Beyond a Higgs factory (strong non trivial requirements at the Z) ...

Talks this week

- This FCC Physics Week only Joint Session of Physics Performance with Physics Programme, Software and Detectors
- Thank you to all the speakers for excellent presentations!!!

top_FCC_jan25_MD....

QCD with low-sqrt(S) runs at FCC-ee

Flavour at FCC- QCD/FLAVOR

Speaker: Joseph

Lepton number violation and heavy neutrino-antineutrino oscillations Speaker: Jan Hajer (CFTP, IST, Universidade de Lisboa)

Measuring (g-2)_tau via gamma-gamma -> tau+tau- at the FCC-ee

Speaker: Michael Pitt (CERN)

Rs, AFBss, RC, B->K*gamma

Speaker: Lars Rohrig (Technische Universitaet Dortmund (DE))

Flavours_EWPOs_L...

Tau polarization and reconstruction
Speaker: Maria Cepeda (CIEMAT)
CauPolarizationFCC...

EPOL

Point-to-point calibration with dimuons

Speaker: Emmanuel Francois Perez (CERN)

Higgs exotica (2HDM, H->4b, LL)

Speaker: Axel Gallen (Uppsala University (SE))

Speaker: Giacomo Polesello (INFN, Sezione di Pavia (IT))

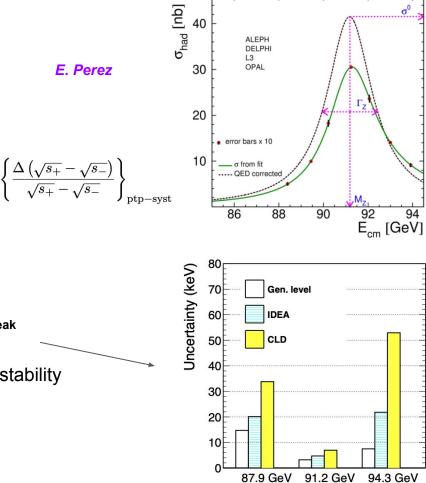
HNL latest results/summaries

Speaker: Pantelis Kontaxakis (Universite de Geneve (CH))

ML based flavor tagging in Fast/Full sim

Speaker: Sara Aumiller (Technische Universitat Munchen (DE))

mical Physics and B


Particle Flow at FCC Speaker: Anna Zaborowska (CERN)

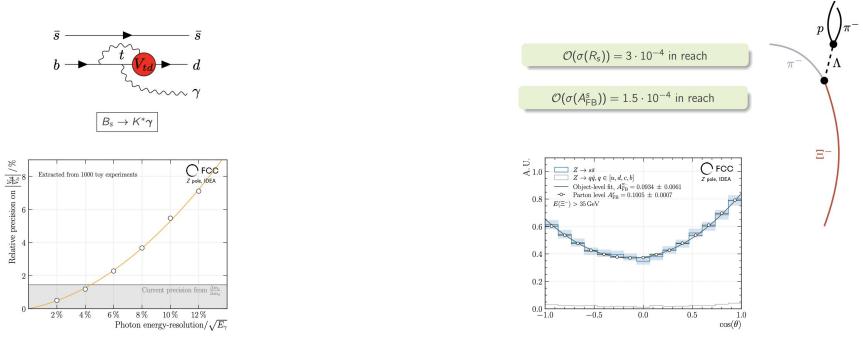
Tracking and ML based Particle Flow

Speaker: Andrea De Vita (University of Padova)

Highlights (focusing on new stuff presented this week)

The Z width

- **Γ**_z is extracted from the **Z lineshape**
- dominant uncertainty on Γ_Z (and $A_{FB}^{\mu\mu}$) is point-to-point uncertainty on \sqrt{s}
- can be monitored in situ with di-muon pairs
- precision scales as


~ (track momentum resolution)/ $\sqrt{N^{off-peak}}$

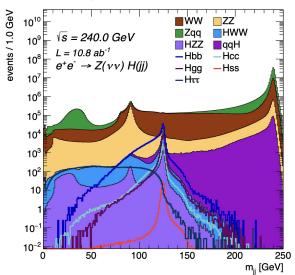
 Requires exquisite control of momentum scale stability (~ 10⁻⁷)

Flavour and EWPO

Lars Roehrig

Define stringent Detector Requirements (vertexing, tracking, calorimetry, PID)

 \rightarrow Use exclusive $\phi(K^+K^-)$ or Ξ^- exclusive modes for R_s or $A_{FB}s$


 \rightarrow O(5 %/ $\sqrt{}\,$ E) well in reach with crystals

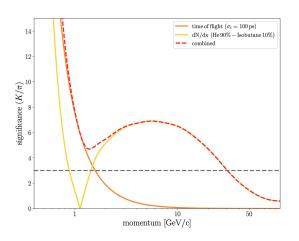
Higgs couplings

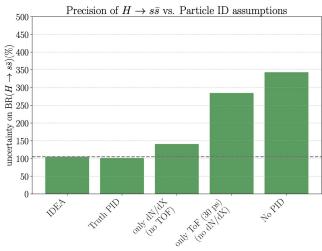
Alexis Maloizel George lakovidis Sofia Giapicchini

FCCAnalyses: FCC-ee Simulation (Delphes)

...

Expected sensitivity (%) of σ .BR(H \rightarrow jj) at 68% CL


240 GeV	H→bb	Н→сс	H→gg	H→ss	
Combined (BNL	0.21	1.66	0.8	104.99	
Combined (APC	0.22	1.65	0.93	121	
365 GeV		H→bb	Н→сс	H→gg	H→ss
Combined	ZH	0.41	3.13	2.21	356.12
	VBF	0.67	3.49	2.66	290


	Explicit tau reconstruction	PNet tau reconstruction
Cut-based analysis	±1.17 %	±0.94 %
BDT analysis 200 trees	±1.06 %	±0.85 %

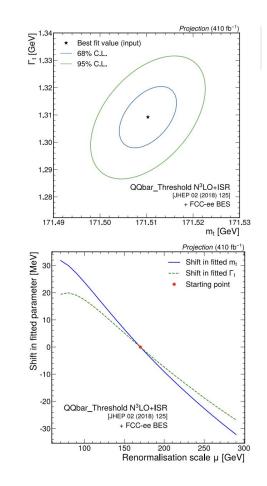
Achieved full combination of $H \rightarrow jj$ modes at both 240 and 365 GeV including split in production mode.

H->ss

- $\circ\quad \textbf{H} \rightarrow \textbf{ss}$ evidence within reach at the FCC-ee
- need Kaon identification:
 - dE/dx (dN/dx) Cherenkov detectors (RICH)
 - Low momentum: Time of flight
- need powerful jet tagging
- need excellent mass resolution (through particle-flow)

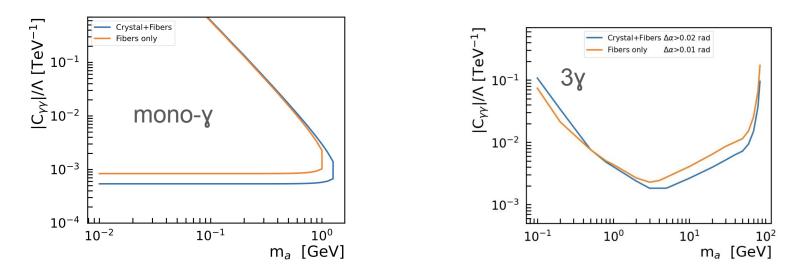
100 ps timing resolution sufficient for low momentum PID

de Franchis, Mehta

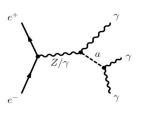

Top mass & threshold studies

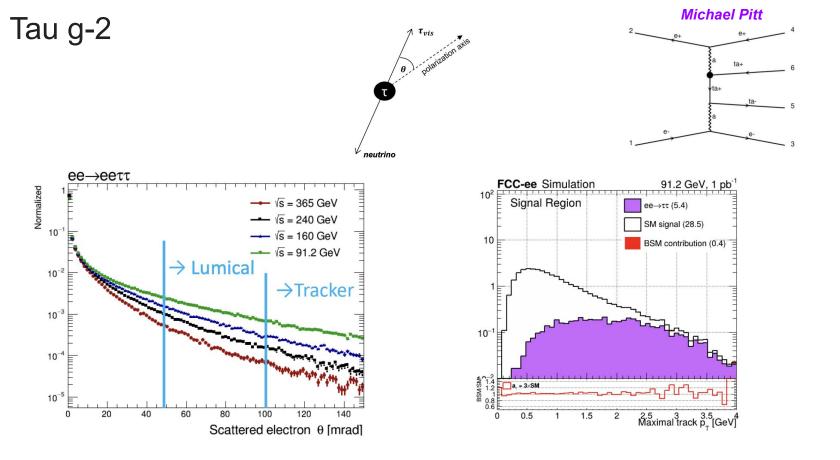
uncertainty	m_t^{PS} [MeV]	$\Gamma_t \; [\text{MeV}]$	comment
statistical	3.7	9.6	FCC-ee, 410 fb^{-1}
luminosity calibration (uncorr.)	0.6	1.1	$\delta L/L = 1 \times 10^{-3}$
luminosity calibration (corr.)	0.3	0.5	$\delta L/L = 0.5 imes 10^{-3}$
beam energy calibration (uncorr.)	1.2	2.0	$\delta \sqrt{s} = 5 \text{ MeV} [16, 17]$
beam energy calibration (corr.)	1.2	0.1	$\delta\sqrt{s} = 2.5 \text{ MeV}$
beam energy spread (uncorr.)	0.6	1.1	$\delta \Delta E = 1\% \ [16]$
beam energy spread (corr.)	< 0.1	1.5	$\delta\Delta E=0.5\%$
parametric (α_s)	2.0	1.9	$\delta lpha_s = 1 imes 10^{-4}$
parametric $(y_{\rm t})$	3.8	4.5	$\delta y_t = 3\%$
total profiled	6.2	11.3	
b-tagging, background	0.2 - 0.5	0.6 - 1.2	controlled in-situ
theory, unprofiled (scale)	35	25	N ³ LO NRQCD [7]

top mass (width) precision (stat) \approx 3.7 (9.6) MeV (stat.)

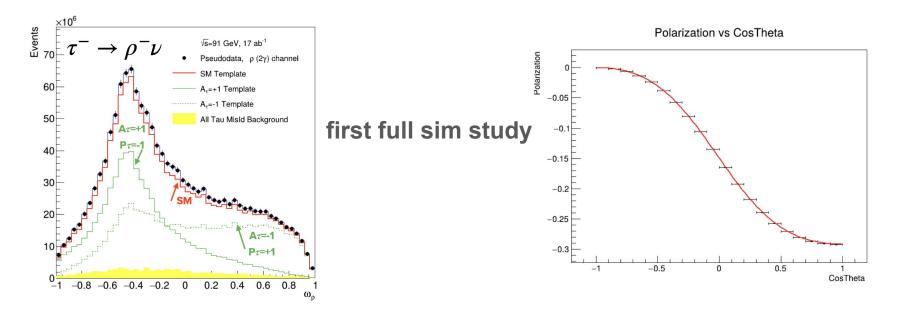

Dominant uncertainty : THEORY

Large sensitivity to top yukawa above threshold




Calorimetry and ALPs

- Low mass ALPs produced copiously at Tera Z
- If ALP decays within detector volume
 - 3 photon signature
- If ALPs very long-lived signature is a single mono-chromatic photon
 - Key handle for irreducible e+ e- \rightarrow v v y background is EM resolution

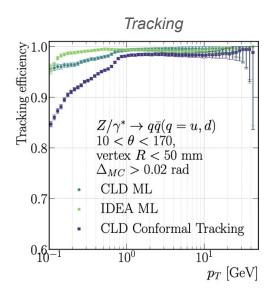


- FCC-ee could measure tau g-2 at the level of CMS in ~ hours
- tagging forward electrons might help with reconstructing tau polarisation

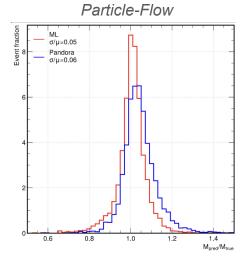
Tau polarisation

Maria Cepeda

 $\mathcal{P}_{ au}(\cos heta) \;\; = \;\; -rac{\mathcal{A}_{ au}(1+\cos^2 heta)+2\mathcal{A}_e\cos heta}{(1+\cos^2 heta)+2\mathcal{A}_e\mathcal{A}_{ au}\cos heta}$

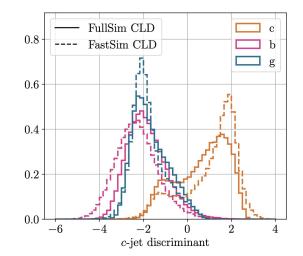


Statistical uncertainty from t for 17 ab⁻¹ (just 1 exp, 1 year, only one decay mode): (15.000 +- 0.007)% Extrapolating to full statistics, full set of final states and decay modes: <<0.01%


\rightarrow Machinery in place, next systematics (and detector requirements)!

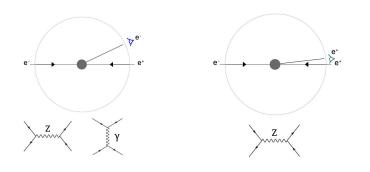
Full Fast sim Tracking/Tagger/MLPF

Andrea de Vita



Dolores Garcia Gregor Krzmanc

S. Aumiller


high level object reconstruction with ML

Jet flavor tagging on-going work in full sim

New ideas at the Z pole

Marc Riembau

 $\alpha_{\rm EM}~{\rm (m_Z^{-2}}$) alternative method

$$\mathcal{R}_{e^-/e^+}(\theta) = \frac{\sigma(e^-e^+ \to e^-(\theta) + X)}{\sigma(e^-e^+ \to e^+(\theta) + X)}$$

To be studied:

control (e⁺ vs e⁻ acceptance) systematics at 10⁻⁵ beam energy spread ? charge mis Id ?

Joe Davighi

Flavor physics wishlist:

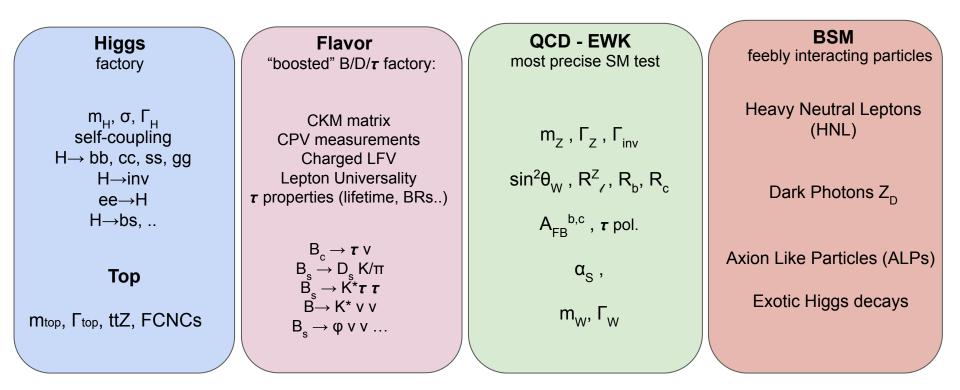
- 1. Extend the $bs\tau\tau$ and $bc\tau\nu$ to include leptonic tau decays
- 2. $B \to K^{(*)}\tau\tau \Rightarrow B \to K^{(*)}\mu\mu$ estimate [preliminary: ~80k in central bin], and other $b \to s\mu\mu$? Muons constructed perfectly, but lose vertices
- 3. Rare decays with electrons e.g. $B \to K^{(*)}ee$;
 - a) Can presumably make big gains w.r.t. LHCb, for processes that are too rare for Belle II. A new frontier?
- 4. To complement $B_c \rightarrow \tau \nu$ study: estimate $B \rightarrow D^* \tau \nu$?
 - a) Likewise for $B \rightarrow \tau \nu$, estimate $B \rightarrow \pi \tau \nu$
- 5. The above $b \rightarrow c$ processes but with $\tau \rightarrow \mu$ (could provide competitive V_{cb} measurement)
- 6. B_s mixing study at FCC-ee is so far limited to V_{cb} improvement Charles, Descotes-Genon, Ligeti, Monteil, Papucci, Trabelsi, Vale Silva 2006 04824
- 7. LFUV R-ratios like in LHCb? Theoretically clean, this time without experimental electron challenges
- 8. LFUV R-ratios involving taus?

Towards the European Strategy

- Physics Performance group in contributing in a significant way to the documents input for the European Strategy
 - Chapter 5 on "Detector Requirements" of the Final Feasibility Status Report
 - Contributions to Chapter 2 "Physics Case" with several analysis results
 - Individual CDS Notes (~30) that can be made public as supplementary material:

https://repository.cern/communities/fcc-ped-sub/records?q=&I=list&p=1&s=10 &sort=newest

- Journal Publications: some papers submitted, but many to be even written up.
- Review on-going (volunteers?)


...and what's next?

- As of now we are all extremely busy finalizing the documents for the EPPSU
- But next steps are quite obvious, and needed to keep the emphasis on having a complete reconstruction of the Full Simulation events:
 - Perform "case studies" with Full Simulation and evaluate the differences
 - help refine high-level reconstruction algorithms (PF, Tagging)
 - design ancillary analyses for calibrations (lumi, ..)
 - Extend the studies to new detector concepts and their variations
 - Extend the processes studied to cover more finely the vaste physics program of the FCC-ee.

We want to thank all the speakers and all the analysts that have been part of the Physics Performance for a great show at this workshop and great content in the Final Report.

Backup

Physics landscape at the FCC-ee

Detector requirements at the FCC-ee

Higgs factory

track momentum resolution (low X_0)

IP/vertex resolution for flavor tagging

PID capabilities for flavor tagging

jet energy/angular resolution (stochastic and noise) and PF **Flavor** "boosted" B/D/**r** factory:

track momentum resolution (low X_0)

IP/vertex resolution

PID capabilities

Photon resolution, pi0 reconstruction QCD - EWK most precise SM test

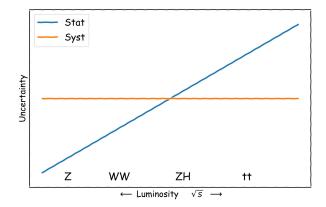
acceptance/alignment knowledge to 10 µm

luminosity

Momentum resolution

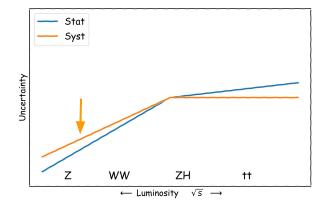
BSM feebly interacting particles Large decay volume

High radial segmentation - tracker - calorimetry - muon


> impact parameter resolution for large displacement

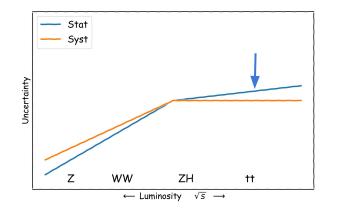
> > timing

triggerless


Requirements to maximise physics output

Requirements to maximise physics output

• match systematic uncertainties to statistical errors


- beam energy and spread calibration (absolute, relative)
- geometrical acceptance
- absolute luminosity determination
- momentum scale stability
- momentum resolution
- o ...

for each observable to measure, need:

- \rightarrow specific ancillary analyses
- \rightarrow beyond state-of-the-art analysis tools to be developed

Requirements to maximise physics output

- match systematic uncertainties to statistical errors
 - beam energy and spread calibration (absolute, relative)
 - geometrical acceptance
 - absolute luminosity determination
 - momentum scale stability
 - momentum resolution
 - o ...

- make optimal use of all available statistics
 - hermeticity, efficiency
 - particle ID
 - energy/momentum/angular resolution

Disclaimer:

- not a complete review
 - no feebly interacting particle searches discussed (see backup)
- focus on a few benchmarks that:
 - present new challenges
 - not a mere repetition of LEP/LHC

Summary report

Summary report