

FCC-SEED A vertex detector concept for FCCee

1

Expression Of Interest for a Vertex Detector at FCCee :

FCC Snail-shape vErtEx Detector (FCC-SEED)

Involved laboratories : IPHC¹, CPPM², IP2I³, LPNHE⁴, APC⁵, Laboratory contact persons: Marlon Barbero², Auguste Besson¹, Marco Bomben ⁵, Gaëlle Boudoul ³, Giovanni Calderini ⁴, Additional editors: Jérôme Baudot¹, Ziad El Bitar¹, Didier Contardo³, Fares Djama², Elisabeth Petit², Serhy Senyukov¹ and Corresponding author : Jeremy Andrea jeremy.andrea@iphc.cnrs.fr¹

¹Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
 ²CNRS/IN2P3, CPPM, Aix-Marseille University, Marseille, France
 ³Institut de Physique des 2 Infinis de Lyon - CNRS/IN2P3, 69100 Villeurbanne, France
 ⁴Laboratoire de Physique Nucléaire et de Hautes Énergies UMR 7585, France
 ⁵laboratoire AstroParticule et Cosmologie, France

General Expression of Interests, not yet attached to a specific detector concept

Introduction and context

- In2p3 (France) has a long standing expertise in the R&D, sensor designs and construction of pixel/vertex detectors.
 - Strong contributions in ATLAS/CMS upgrades but also STAR-HFT (MIMOSA-28), ALICE ITS-2 (ALPIDE), ITS-3 (MOSAIX), CBM-MVD (MIMOSIS), Belle-II VTX upgrade (OBELIX), etc.
- We want to participate to the creation of vertex detector concept for FCCee based on CMOS-MAPS sensors, with contributions to the following topics :
 - R&D for MAPS sensors, within the DRD3,
 - A new approach for detector geometry design, based on curved sensors,
 - Mechanics and integration,
 - Sensor simulations and detector full-simulation for evaluation of performances.
- This is a national effort, meant also to structure our community. But international collaboration is of course absolutely mandatory !

Vertex detector requirements reminder

FCCee

$$\sigma_{d_0} = a \oplus \frac{b}{p \sin^{3/2} \theta}$$

$$a \simeq 5 \,\mu \text{m}; \quad b \simeq 15 \,\mu \text{m GeV}$$

$$b \sim r_0$$

$$a \sim \sqrt{5}$$

$$\frac{b \sim r_0 \sqrt{material}}{a \sim \sqrt{r_0}}$$

- Challenge:
 - How to reach the targeted resolution with an adapted read-out architecture while fulfilling all the other requirements ?
 - How to propose a robust but ambitious VTX concept ?

• Side remarks

- The Vertex detector has to be integrated in the whole tracker concept
- Some considerations depend on the main tracker choice (e.g. timing capabilities, low pT track reconstruction, etc.)

Spatial resolution per layer	$\simeq 3$	μm	
Pixel pitch	14-20	μm^{-1}	
read-out time	$\simeq 500$	ns 2	
Power dissipation	$\simeq 20 - 50$	mW/cm^2	
Sensor thickness	40 - 50	μm 3	
Safety factor on particle rate	3	4	
Maximum Hit rate	75 / 25	MHz/cm^{2} 5	
Maximum Hit rate	$22.5 imes 10^{-3} \ / \ 7.5 imes 10^{-3}$	$hits/mm^2/BX$ 5	
Assumed cluster multiplicity	5		
Fired pixel rate	375 / 125	MHz/cm^{2} 5	
Fired pixel rate	0.33 / 0.11	$fired \ pixels/mm^2/BX$ 5	
Occupancy/pixel/read-out	$3.45\times 10^{-3}\ /\ 1.15\times 10^{-3}$	/pixel/readout ⁵	
Ionising radiation (1^{st} layer)	30 / 10	MRad/year ⁵ ⁶	
Corresponding Fluence	$\simeq 1.8 imes 10^{14}$ / $6 imes 10^{13}$	$n_{eq(1\ MeV)}/year$ 5 7	

¹ Depending on charge sharing/encoding

 2 Compromise between power dissipation and pile-up at $\sqrt{s}=91\;GeV$

³ To allow bending

 4 due to be am background uncertainties estimates

 5 With / without safety factor

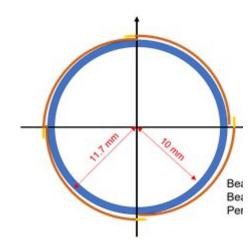
 6 assuming beam running 180 days/year, and average incident angle of $\simeq 70^o.$

 7 assuming NIEL factor of 5×10^{-2}

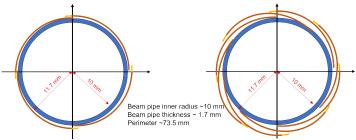
	thickness (mm)	Mat. Budget $(X/X_0 \%)$
Beam pipe ¹		
Au	0.005	0.16%
$AlBeMet 162^2$	0.35	0.14%
Paraffin	1.0	0.18%
$AlBeMet162^2$	0.35	0.14%
Total beam pipe	1.705	0.61%
Single layer		
Silicon sensor	0.050	0.05%
Cables, flex and support		$\simeq 0.10\%$
Material per layer		$\simeq 0.15\%$

¹ described in [6]

 2 62% Be and 38% Al alloy


³ from [7]

FCC-SEED in a nutshell


- Starting point:
 - Historical approach (CLD, ILD): 3 double ladder + discs: Robust but not optimized for material budget
 - À la ALICE ITS-3 : 3/4 layers with stitched half cylinders
 - Fill factor not 100% per layer
 - Stitching mandatory (impact on design) Pitch ? Power ? Yield ? Fill factor ? Bent radius ?
 - Very competitive for mat. budget but limitations (acceptance, resolution, radius ?)
 - Alternative Proposal: Seed concept = bent ladders
 - Competitive for mat. Budget. AND full azimuthal acceptance
- Concept based on large size curved sensors (DRD8)
 - Smallest possible radius, first hits as close as possible to the collision point,
 - Minimization of the material budget.
- Dedicated R&D for maps (participating to the Octopus project, DRD3-7).
 - Allows to define mid-term milestones (optimizing the spatial resolution first)
- Coherent developments of sensors, mechanic, integration and simulation.

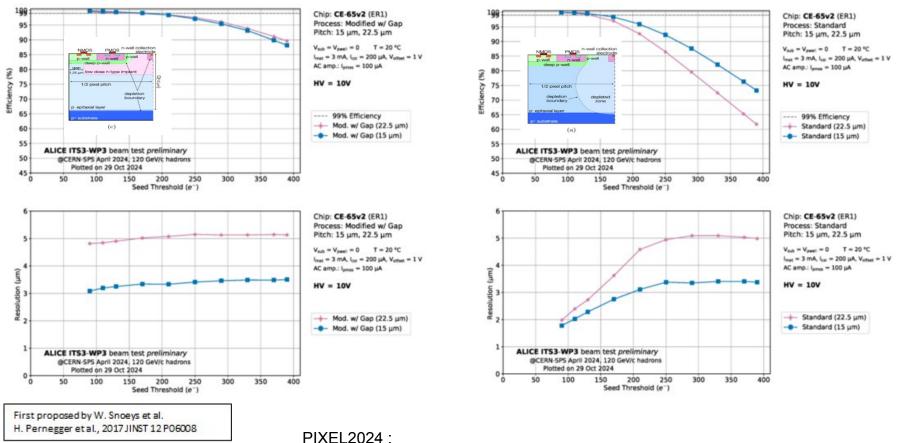
• Overlaps to avoid cracks in the acceptance in phi.

- Ladders: bonding performed along the longitudinal (z) axis.
- Stay flexible
 - Focused on (long) barrel, to be completed by disks.
 - Options to be explored :
 - Possibility of stitching,
 - Double sided vs single sided layers,
 - Layers radius and numbers of layers are free parameters
 - Cooling options (air cooling preferred)

	Layer	1	2	3	4	5
	Radius (mm)	12-13	24	36	48	60
	Zmax (mm)	90	120	120	120	120
	Perimeter (mm)	75	151	226	302	377
	# Chips per ladder	6	8	8	8	8
	# ladders	4	8	12	16	20
	Layer		1-2	3-4		5-6
	Radius (mm)	12-13		35-36	35-36	
	Zmax (mm)		90	120		120
	Max perimeter (mm)		82	226		377
	# Chips per ladder		6	8		8
	# ladders		4	12		20
	Single chip dimension Sensitive area chip dimen					$2.2 \ mm^2$ $0.2 \ mm^2$
	/		4	120 mm		
Ladders						
ngle ladder option)		60 mm	······	90 mm		133 mra
Bean	10 mm ¹²	mm				
Cooling inlets/outlets						
Ladders puble ladder option)						
		Read-out p	periphery = 6 × 30	× 2mm ²		
1 ladder (1 ^s	t layer)	Sensitive ar	$ea = 6 \times 30 \times 19 m$	m ²		Į

CMOS-MAPS Sensors R&D

- Long History of CMOS-MAPS R&D inside IN2P3 labs
- Today :
 - IN2p3 involved in full scale sensors : ITS-3 (MOSAIX), CBM-MVD (MIMOSIS), Belle-II VTX upgrade (OBELIX),
 - IN2p3 groups partipate to the TPSCo 65 nm R&D (initiated by CERN and ALICE ITS-3)
- To be pursued inside DRD3/DRD7 trought the OCTOPUS project targeting fine resolution full size prototypes
 - adapted to beam telescope
 - and adressing Higgs factories requirements



Institute	Contact	Main areas of contribution	
APC Paris	M. Bomben	Simulations, testing	
Bonn University	J. Dingfelder	ASIC design, testing	
CERN	D. Dannheim	Testing, DAQ, ASIC design support (through DRD7	
DESY	S. Spannagel	ASIC design, testing, DAQ, simulations	
ETH Zurich	M. Backhaus	ASIC design, testing	
FNSPE Prague	P. Svihra	ASIC design, DAQ, testing	
GSI Darmstadt	M. Deveaux	Simulations, testing	
HEPHY Vienna	T. Bergauer	DAQ, testing, ASIC design	
IPHC Strasbourg	A. Besson	ASIC design, testing	
Oxford University	D. Bortoletto	Powering, integration, testing	
Zurich University	A. Macchiolo	Testing, DAQ, simulations	

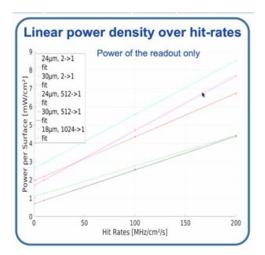
OCTOPUS project

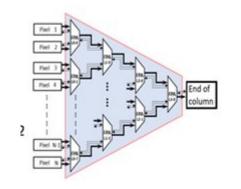
TPSCo 65nm : spatial resolution

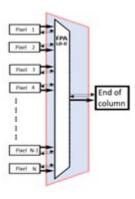
https://indico.in2p3.fr/event/32425/contributions/142771/

Key message: Spatial resolution $\leq 3 \mu m$ reachable if:

FUTURE


CIRCULAR


- Pitch below ~ 15 μm (no charge sharing, binary output)
- Pitch below ~ 20-25 μm (charge sharing AND charge encoding on fews bits)

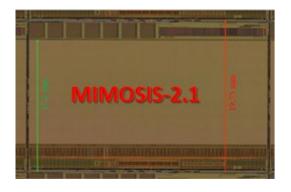


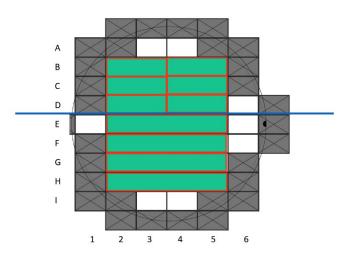
- Small pitch is conflicting with the footprint of the readout architecture
 - Idea: decouple the relationship pitch resolution with charge sharing AND charge encoding (few bits ADC) Keep seed S/N high enough but improve resolution
- Proposal : Asynchronous (clockless) matrix readout
 - Based on Fixed Priority Arbiters (FPA)
 - Versatile architecture (Power, hit rate)
 - SPARC Prototype to be sumitted in ER2 (2025) (In2p3 and IRFU)



Mechanics, cooling and integration

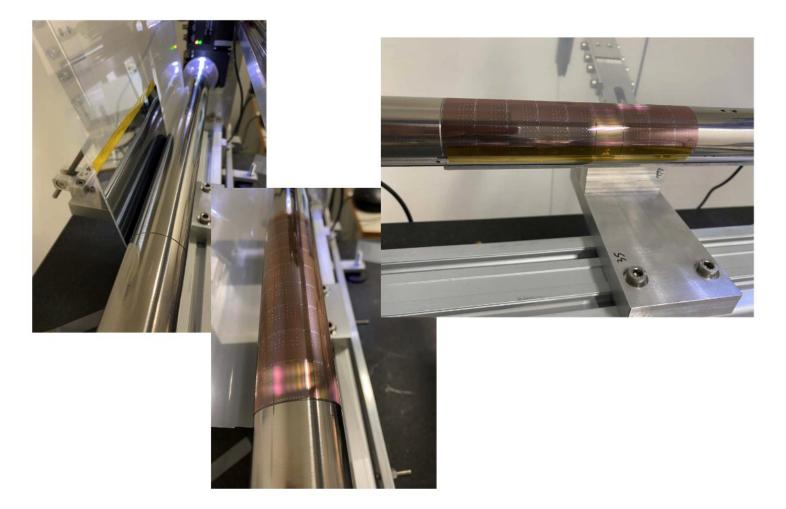
- Several challenges ahead.
- We need to master sensor bending (see next slide).
- Design light and precise mechanical supports
 - Determine light material, allowing for a precise geometry,
 - Imagine a robust and "simple" assembly procedure, including integration and cable/fibre routings,
 - Allowing for an efficient (air) cooling, while other options can be explored too.
- Short/midterm plan :
 - Start the design effort,
 - Design first geometry to play with,
 - Implement it into a full simulation.





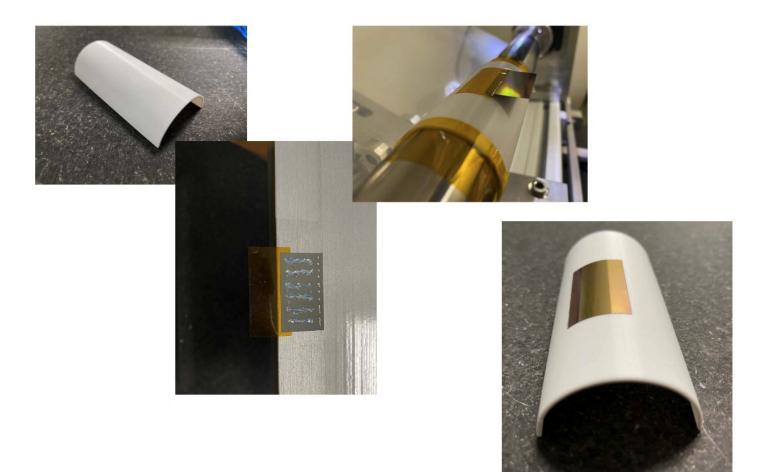
Curved sensors

- Working plan :
 - Prepare and install sensor bending bench, with different radius options (12-15mm), and different sensor thickness (30-50 microns).
 - Practice bending with dummy sensors, then real functional on single sensors (Mimosis), perform connectivity and setup DAQ, and tests.
 - Bending of a wafer slice (Mimosis), connectivity and tests,
 - Move toward a larger scale demonstrator of the 1st Layer in a few years from now.
 - Mimosis : large size sensor (6 cm²), with specs close to FCCee needs.

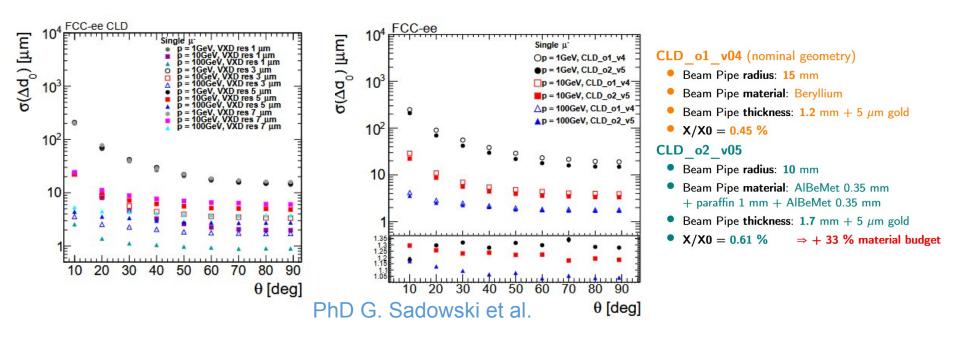


Curved sensors (2)

Bending bench highly inspired from Alice ITS3. Bending test of super-Alpide pad, 130x50mm, thickness of 40 microns. Radius: 18 mm



Curved sensors (3)


Bending tests of Mimosis 2.1 (31x17mm), thickness of 40-50 microns. Radius: 18 and 15 mm. Successful (no breaking)

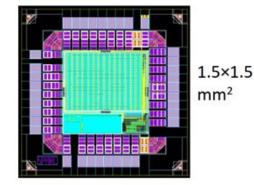
- Preliminary studies where performed, using the CLD full simulation.
- Impact of the sensor design (single point resolution), geometry, and material budget on the track resolutions / impact parameter

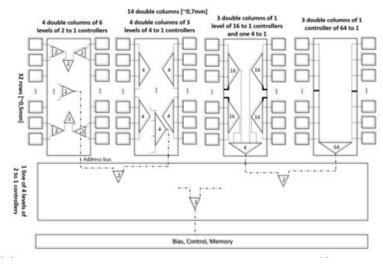
- Similar studies (including physics performance) have to be performed after :
 - Implementation of the digitisation,
 - Implementation of the new geometries into the full simulation.

- Starting efforts for the design of a Vertex detector concept for FCCee
 - Based on dedicated maps-sensors R&D <= long standing expertise in French labs,
 - Curved sensors, mechanics and integration <= bending being practiced currently, involvements of micro-technical and mechanical engineers,
 - Include simulation studies <= test impact of design choices on physics performances,
 - Global and coherent approach.
- A detailed program is being constructed, with the scope of preparing a standalone Expression of Interest in preparation with French institutes (open to collaborations).
 - draft of Eol

COLLIDER

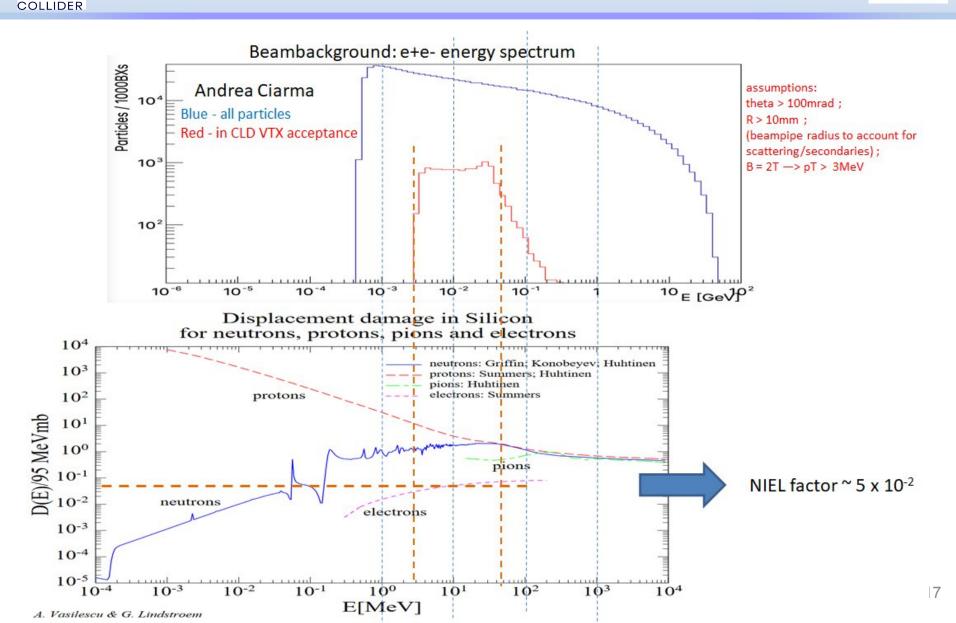
• More details in a future public document (available on request)





SPARC : first prototype with asynchronous readout

- Pixel pitch: $24 \times 16 \,\mu\text{m}^2$
- Pixel matrix: 32 × 28
- Pixel front-end: DPTS (CERN)
- FPA tree types: 2:1, 4:1, 16:1, 64:1
- Power dissipation: 5 mW/cm²
- Mean readout time: 6.3 ns
- Developed by IPHC and IRFU
- To be submitted early 2025 in ER2
- Test system in preparation for summer 2025



Fluence @ FCCee

FUTURE

CIRCULAR

