universitätfreiburg

Large Area CMOS Silicon Detectors for the FCC

Ulrich Parzefall, University of Freiburg

14 January 2025, 8th FCC Physics Workshop

universität freiburg

Silicon for the FCC - Setting the Scene

- Silicon sensors are core tracking element in HEP
- At present, vast majority of (large) experiments use (or install) passive silicon in dedicated technology, often from single source
- Mostly Hybrid Technology (sensor and separate FE ASIC)
- Area of silicon is constantly increasing
- Presently running Si trackers provide 3D space points ullet
- "Fast timing" to be used e.g. in Phase-2 LHC upgrades
- FCC poses a number of challenges: position resolution, low mass, radiation doses (for FCC-hh)
- FCC detectors will likely also have silicon-based trackers! If we would need to start building in 5 or 10 years, this would be monolithic CMOS... possibly like ALICE ITS3
- Most CMOS projects are pixels also strip examples
- My FCC Requirements: ~3 µm single-point resolution, ~5 ns time resolution, average power consumption below ~50 mW/cm2, low mass (thin, low inactive area)
- Small highly biased CMOS selection presented today universitätfreiburg

Silicon for the FCC - Setting the Scene

- Silicon sensors are core tracking element for in HEP
- At present, vast majority of (large) experiments use (or install) passive silicon in dedicated technology, often from single source
- Mostly Hybrid Technology (sensor and separate FE ASIC)
- Area of silicon is constantly increasing
- Presently running Si trackers provide 3D space points.
- "Fast timing" to be used e.g. in Phase-2 LHC upgrades
- FCC poses a number of challenges: position resolution, low mass, radiation doses (for FCC-hh)
- FCC detectors will likely also have silicon-based trackers! If we would need to start building in 5 or 10 years, this would be monolithic CMOS... possibly like ALICE ITS3
- Most CMOS projects are pixels also strip examples
- My FCC Requirements: ~3 µm single-point resolution,
 ~5 ns time resolution, average power consumption below
 ~50 mW/cm2, low mass (thin, low inactive area)
- Small highly biased CMOS selection presented today
 universität freiburg
 8th FCC WS | CMOS Silicon Detector

WG1 research goals <2027				
	Description			
RG1	Spatial resolution: \leq 3 µm position resolution			
RG2	Timing resolution: towards 20 ps timing precision			
RG3	Readout architectures: towards 100 MHz/cm ² , 1 GHz/cm ² with 3D stacked monolithic sensors, and on-chip reconfigurability			
RG4	Radiation tolerance: towards 10 ¹⁶ n _{eq} /cm ² NIEL and 500 MRad			
RG5	Low-cost large-area CMOS sensors			

Example: Passive CMOS Strips

- Sensors: 150nm LFoundry, 150 µm thick, passive (Bonn, TU Dortmund, DESY, Freiburg)
- Two lengths of strips: 2.1 and 4.1 cm
 - 1 cm² reticle used \rightarrow stitching needed (max 5).
- Three different designs
 - Regular similar to the ATLAS ITk strip design
 - Low dose 30 & 55 low dose implant and NIM capacitor Sensors simulated, studied in lab and test beam measurements

Reticle A	Reticle B	Reticle B	Reticle B	Reticle C
-----------	-----------	-----------	-----------	-----------

Passive CMOS Strips: Electric Field simulation at 100 V

universitätfreiburg

8th FCC WS | CMOS Silicon Detectors for the FCC | Ulrich Parzefall | 14 Jan 2025

Passive CMOS Strips: Leakage Current Post-Irradiation: Measured and Simulated

universitätfreiburg

Passive CMOS Strips: Test Beam Measurements

- Measured at DESY-II test beam facility
- Telescope consists of 6 ALPIDE Pixel sensors
- Device Under Test (DUT) read out with ALiBaVA system (analogue, Beetle ASIC (LHCb))
- Several DUTs : from unirradiated to proton and neutron doses up to $3x10^{15} n_{eq}/cm^2$ (NIEL)

Dashed line: expected binary resolution

universitätfreiburg

- Calculate SNR (Signal to noise ratio) in each strip
- Identify real hits and create clusters of hit strips by applying a cut in SNR (Seed or Neighbour cut)
- Measure cluster size

Passive CMOS Strips: Resolution

- Residual: Distance between cluster position on DUT and reconstructed track intercept at DUT
- DUT resolution obtained by subtracting known telescope resolution
- Initially, resolution was time-dependent, requiring time-dependent alignment and correction

- Effect is caused by details of cooling system....
- E.g. ATLAS IBL also experienced time-dependent position drifts and needs time-dependent alignment....

Passive CMOS Strips: Resolution

- Expected binary resolution is reached
- Resolution remains constant up to $3x10^{15} n_{eq}/cm^2$
- Resolution improves slightly with voltage for unirradiated sensor, same resolution for all 3 designs
- Irradiated sensors show different resolutions for the designs and a slighlty degrading resolution with voltage

- Resolution reaches constant value around full depletion (efficiency plots give similar message)
- Resolution of LD30 and Regular design comparable, LD55 worse

Dashed line: expected binary resolution

universität freiburg

- Efficiency measured by search window around telescope track, extrapolated to DUT
- Efficiency increases with voltage, as depletion progresses trough the sensor

- Irradiated sensors have reduced efficiency with increasing dose (need higher bias to become efficient)
- Regular design largely performs best
- Lowdose55 design disfavoured

- Efficiency measured by search window around telescope track, extrapolated to DUT
- Efficiency increases with voltage, as depletion progresses trough the sensor

- Irradiated sensors have reduced efficiency with increasing dose (need higher bias to become efficient)
- Regular design largely performs best
- Lowdose55 design disfavoured

- Neutron and Proton irradiations have somewhat different effects on designs in terms of efficiency
- Several possible explanations, but not yet fully understood

Passive CMOS Strips: Efficiency Maps ("In-Strip Efficiency")

- In-Strip plots: folding all strips onto a single one (unit cell) to increase statistics (see picture to right)
- Plots show 2D effciency map of unit cell, and projections parallel (x) & orthogonal (y) to strip direction
- Example: sensors irradiated to 3x10¹⁵ n_{eq}/cm² (all 3 designs)
- Neutron, $3 \cdot 10^{15} n_{eq}/cm^2$, Reg Neutron, $3 \cdot 10^{15}$ n_{eg}/cm², LD30 Neutron, $3 \cdot 10^{15}$ n_{ea}/cm², LD55 190V: S=4. N=1.5 190V: S=4. N=1.5 190V: S=4, N=1.5 1.0 y Position [cm] Position [cm] Position [cm] ifficiency Efficiency Efficiency 0.8 0.8 0.6 > > 0.4 Folding onto 0 1.0 .0 unit cell 0.5 0.5 0.5 0.0 0.0 0.0 25 -25 25 25 -25 -25 x Position $[\mu m]$ x Position $[\mu m]$ x Position $[\mu m]$

 Following slides will be stepping up bias from where hits are seen to max bias voltage

- Efficiency increases with bias voltage: starts to increase for Regular (190 V), then LD30 (230 V to 250 V), then for LD55 Design (320 V to 350 V)
- "Efficient" region starts out wider than strip implant.
- Width of efficient region stays constant after few voltage steps
- Overall efficiency continually grows
- Stitching not visible anywhere in efficiency map -> stitching successful, even after irradiation!

- Efficiency increases with bias voltage: starts to increase for Regular (190 V), then LD30 (230 V to 250 V), then for LD55 Design (320 V to 350 V)
- "Efficient" region starts out wider than strip implant.
- Width of efficient region stays constant after few voltage steps
- Overall efficiency continually grows
- Stitching not visible anywhere in efficiency map -> stitching successful, even after irradiation!

- Efficiency increases with bias voltage: starts to increase for Regular (190 V), then LD30 (230 V to 250 V), then for LD55 Design (320 V to 350 V)
- "Efficient" region starts out wider than strip implant.
- Width of efficient region stays constant after few voltage steps
- Overall efficiency continually grows
- Stitching not visible anywhere in efficiency map -> stitching successful, even after irradiation!

- Efficiency increases with bias voltage: starts to increase for Regular (190 V), then LD30 (230 V to 250 V), then for LD55 Design (320 V to 350 V)
- "Efficient" region starts out wider than strip implant.
- Width of efficient region stays constant after few voltage steps
- Overall efficiency continually grows
- Stitching not visible anywhere in efficiency map -> stitching successful, even after irradiation!

- Efficiency increases with bias voltage: starts to increase for Regular (190 V), then LD30 (230 V to 250 V), then for LD55 Design (320 V to 350 V)
- "Efficient" region starts out wider than strip implant.
- Width of efficient region stays constant after few voltage steps
- Overall efficiency continually grows
- Stitching not visible anywhere in efficiency map -> stitching successful, even after irradiation!

- Efficiency increases with bias voltage: starts to increase for Regular (190 V), then LD30 (230 V to 250 V), then for LD55 Design (320 V to 350 V)
- "Efficient" region starts out wider than strip implant.
- Width of efficient region stays constant after few voltage steps
- Overall efficiency continually grows
- Stitching not visible anywhere in efficiency map -> stitching successful, even after irradiation!

- Efficiency increases with bias voltage: starts to increase for Regular (190 V), then LD30 (230 V to 250 V), then for LD55 Design (320 V to 350 V)
- "Efficient" region starts out wider than strip implant.
- Width of efficient region stays constant after few voltage steps
- Overall efficiency continually grows
- Stitching not visible anywhere in efficiency map -> stitching successful, even after irradiation!

- Efficiency increases with bias voltage: starts to increase for Regular (190 V), then LD30 (230 V to 250 V), then for LD55 Design (320 V to 350 V)
- "Efficient" region starts out wider than strip implant.
- Width of efficient region stays constant after few voltage steps
- Overall efficiency continually grows
- Stitching not visible anywhere in efficiency map -> stitching successful, even after irradiation!

- Efficiency increases with bias voltage: starts to increase for Regular (190 V), then LD30 (230 V to 250 V), then for LD55 Design (320 V to 350 V)
- "Efficient" region starts out wider than strip implant.
- Width of efficient region stays constant after few voltage steps
- Overall efficiency continually grows
- Stitching not visible anywhere in efficiency map -> stitching successful, even after irradiation!

- Efficiency increases with bias voltage: starts to increase for Regular (190 V), then LD30 (230 V to 250 V), then for LD55 Design (320 V to 350 V)
- "Efficient" region starts out wider than strip implant.
- Width of efficient region stays constant after few voltage steps
- Overall efficiency continually grows
- Stitching not visible anywhere in efficiency map -> stitching successful, even after irradiation!

- Efficiency increases with bias voltage: starts to increase for Regular (190 V), then LD30 (230 V to 250 V), then for LD55 Design (320 V to 350 V)
- "Efficient" region starts out wider than strip implant.
- Width of efficient region stays constant after few voltage steps
- Overall efficiency continually grows
- Stitching not visible anywhere in efficiency map -> stitching successful, even after irradiation!

- Efficiency increases with bias voltage: starts to increase for Regular (190 V), then LD30 (230 V to 250 V), then for LD55 Design (320 V to 350 V)
- "Efficient" region starts out wider than strip implant.
- Width of efficient region stays constant after few voltage steps
- Overall efficiency continually grows
- Stitching not visible anywhere in efficiency map -> stitching successful, even after irradiation!

- Efficiency increases with bias voltage: starts to increase for Regular (190 V), then LD30 (230 V to 250 V), then for LD55 Design (320 V to 350 V)
- "Efficient" region starts out wider than strip implant.
- Width of efficient region stays constant after few voltage steps
- Overall efficiency continually grows
- Stitching not visible anywhere in efficiency map -> stitching successful, even after irradiation!

- Efficiency increases with bias voltage: starts to increase for Regular (190 V), then LD30 (230 V to 250 V), then for LD55 Design (320 V to 350 V)
- "Efficient" region starts out wider than strip implant.
- Width of efficient region stays constant after few voltage steps
- Overall efficiency continually grows
- Stitching not visible anywhere in efficiency map -> stitching successful, even after irradiation!

- Efficiency increases with bias voltage: starts to increase for Regular (190 V), then LD30 (230 V to 250 V), then for LD55 Design (320 V to 350 V)
- "Efficient" region starts out wider than strip implant.
- Width of efficient region stays constant after few voltage steps
- Overall efficiency continually grows
- Stitching not visible anywhere in efficiency map -> stitching successful, even after irradiation!

ALICE Stitching Full Diameter on 12" Wafer: CERN ER1 Project (Pix) MOSS/MOST

- MOSS: 14 mm × 259 mm, 6.72 Mpixels, (22.5 × 22.5 and 18 × 18 µm2), conservative design and layout, different layout densities
- MOST: 2.5 mm × 259 mm, 0.9 Mpixels (18 × 18 µm2), full density design, global power network & conservative power switches

universität freiburg

ALICE MOSS Tests

- Would already be a significant strip device, but a 26cm pixel sensor is a very complex beast!
- Valuable Lessons on stitching, yield, handling, powering scheme, leakage currents,.....

Continuing the Passive CMOS Strips Line

- Two DRD3 Projects directly target large area silicon as for FCC:
- Bonn, DESY, Dortmund, Freiburg, "Monolithic strip sensors for large area detectors" (Jens Weingarten): monolithic but skip stitching this time, FCC-ee and others
- IHEP Bejing (plus many Chinese groups and labs), "CMOS Strip Chip for Future Tracking Detector", targeting CEPC, would work for FCC-ee, (Xin Shi).

universitätfreiburg

efficiency [%]

Other Projects: Tangerine

https://www.sciencedirect.com/science/article/abs/pii/S0168900222004508

- Make sensors in 65 nm CMOS imaging process for particle physics applications
- Driven by DESY
- Sensors have been designed, extensively simulated, fabricated and thoroughly tested
- Efficiency vs. threshold results from the "Analog Pixel Test Structure" (APTS) (right). Trend between simulations and data matches well.

https://www.sciencedirect.com/science/article/abs/pii/S0168900222004508

Mean efficiency vs threshold

Other Projects: Octopus ("successor" of Tangerine)

- DRD3 WP1 (CMOS) project proposal (one of 16)
- TPSCo 65 nm CMOS, 11 institutes, 38 people
- Closely linked to TPSCo65 schedule, also DRD7
 - DRD7: HEP Electronics and on-detector processing
- Fine-Pitch CMOS Sensors with Precision Timing for Lepton-Collider Experiments
- Staged approach to enable refinement of architecture in view of final development targets

D. Dannheim https://indico.cern.ch/event/1469442/

https://indico.cern.ch/event/1469442/contributions/6186575/attachments/2955392/5

196443/LC-Vertex-DRD3-Update-28Oct2024.pdf

universität freiburg

Radiation Hardness Example from ALICE ITS3

W. Snoeys EP Seminar, indico.cern.ch/event/1461789/

- 99% efficiency at $3x10^{15} n_{eq}/cm^2$
- Vast majority of sensors at 3x10¹⁵ n_{eq}/cm² require cooling to
 -20 at least, but this is achieved at room temperature!

• For full details: doi: 10.1016/j.nima.2023.168589

universitätfreiburg

Conclusions and Take Home Messages

Main Conclusions

- Many international projects on (CMOS) Silicon sensors for FCC tracker underway
- Various technology nodes under study, from 180nm down to 55nm (mostly 65nm)
- By the time we build any FCC detectors, there will be other technologies
- Large international effort
- Radiation hardness up to 3x10¹⁵ n_{eq}/cm² demonstrated already
- FCC-hh fluences are a challenge, but can be met on the time scale given

Take Home Messages

- If we had to build an FCC tracker in 10 years we could deliver
- On that timescale, it would be monolithic CMOS with spacial resolution as desired, and timing resolution of ~25ps or better
- 25ps timing better than required, penalties are power and mass, but future trackers likely 4D
- Assuming we have more time, Si detector R&D will still advance and/or we might have something "better"
- "Better" can mean "cheaper", i.e., delivering the same performance at lower cost
- If the Physics Case is convincing and the funding is secured, the Si detector will materialise

Links, Stuff, Backup

• Material: Walter Snoeys' excellent CERN Detector Seminar: https://indico.cern.ch/event/1461789/

Silicon for FCC and DRD3

WG1 research goals <2027			
	Description		
RG1	Spatial resolution: $\leq 3 \mu m$ position resolution		
RG2	Timing resolution: towards 20 ps timing precision		
RG3	Readout architectures: towards 100 MHz/cm ² , 1 GHz/cm ² with 3D stacked monolithic sensors, and on-chip reconfigurability		
RG4	Radiation tolerance: towards 10 ¹⁶ n _{eq} /cm ² NIEL and 500 MRad		
RG5	Low-cost large-area CMOS sensors		

Passive CMOS Strip Design Variants

Radiation Damage Models in TCAD

Surface effects

oxide charge build- up interface trap states formation

LHCb/CERN Bulk Model

Perugia Bulk+Surface Model

Bulk effects

deep level traps recombination centres creation

Introducing traps in silicon region

Modifying recombination models

Bulk trap levels distribution in the Perugia model

universität freiburg

Passive CMOS Strips: Leakage Current Post-Irradiation: Measured and Simulated

Dashed line: simulation Solid line: measurement Proton and neutron irradiated, all fluences NIEL, T = -30 °C

universitätfreiburg