Beamstrahlung Background in ILD@FCC-ee (update)

8th FCC Physics Workshop 15.01.2025

Daniel Jeans, Jenny List, <u>Victor Schwan</u> victor.schwan@cern.ch

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

TPC of the ILD@ILC

- * Hybrid tracking system
 * Ions build up in TPC volume due to slow drift speed
- Primary ions and ion backflow from gas amplifier (GEM, microMegas, ...)
- Distort trajectory of ionization electrons
- May degrade momentum resolution
- Beamstrahlung expected to be major contributor

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

Machine-Detector-Interface: ILC vs FCC-ee

	ILC	FCC-ee
Crossing angle	14 mrad	30 mrad
L*	4.1 m	2.2 m
Detector solenoid	3.5 T	2.0 T
Add. B-fields	anti-DID (?)	- compensating - screening

* DID = detector-integrated dipole

* Very different bunch structure, materials and fields in the forward region

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

X0 Y= 0.001 [cm]

Magnetic Field Maps

- * Beamstrahlung \Rightarrow many, very low p_T e+e- created in bunch collisions
- \ast Anti-DID (detector-integrated dipole) field guides low $p_{\scriptscriptstyle T}$ particles into the outgoing beampipes

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

New ILD Models for FCC-ee

Recipe:

- * Take ILD_I5_v02
- Remove subdetectors in cylindrical volume inside TPC
- * Take subdetectors in this volume from CLD_02_v07

* Vertex, Inner Tracker adapted

- * Common MDI: MDI_o1_v00
- Volume overlap of Inner Tracker (CLD) and TPC (ILD)
 - * Prioritize TPC: ILD_FCCee_v01
 - Prioritize Inner Tracker:
 ILD FCCee v02

Number of Primary Ions Produced in TPC per BX

* Only ions originating from beamstrahlung considered

Number of Primary Ions Produced in TPC per BX

			FCCee-91	FCCee-240	ILC-250
model	B-field [T]	MDI	thousand ions / bunch crossing		
				mean \pm RM	S
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300
ILD_15_v03	3.5 (map)	ILC	5.7 ± 7.9	14 ± 11	1100 ± 200
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6 ± 1.5	3.7 ± 9.7	450 ± 110
new FCCee models					
ILD_FCCee_v01	2.0 (uniform)	FCC-	ee 351 ± 115	5 987 ± 155	111000 ± 2100
ILD_FCCee_v01	2.0 (map)	FCC-	ee 261 ± 80	$5 823 \pm 180$	100000 ± 2100
					D. Jeans

- * Only ions originating from beamstrahlung considered
- * "realistic" situations : a few 100k \rightarrow 1M primary ions / BX
- * ILC and FCC-ee are similar

(Comparing ILC-MDI @ ILC-beam conditions with FCCee-MDI @ FCCee-beam conditions

*ILD_FCCee_v0X @ ILC show effect of missing anti-DID and close QD0 positioning (unrealistic situation)

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

Number of Primary Ions Produced with Collision Rate

★ TPC integrates over many collisions; maximum ion drift time ~ 0.44 s
 #ions ≈ primary ions/BX * BX freq * max drift time * 50%
 [some ions already reached cathode]

Collider	FCC-91	FCC-240	ILC-250
Detector model	ILD_FCCee_v01	ILD_FCCee_v01	ILD_15_v05
average BX frequency	30 MHz	800 kHz	6.6 kHz
primary ions / BX	260 k	820 k	450 k
primary ions in TPC at any time	$1.7 imes 10^{12}$	$1.4 imes 10^{11}$	$6.5 imes 10^8$
average primary ion charge density nC/m^3	6.4	0.54	0.0025

D. Jeans

- * Primary ion density in TPC:
 - * 2500 times higher at FCC-ee-91 than ILC-250
 - * 200 times higher at FCC-ee-240 than ILC-250

* expected maximum distortion due to beamstrahlung at FCC-91 is O(cm) [primary ions only, ILD_FCCee_v01]

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

Test of Mitigation Options

Disclaimer:

I was strongly involved in the creation of the previously shown ILD@FCCee models, but not in the following TPC studies by Daniel Jeans.

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

Origin of Parent Particles

X [cm]

hParticleEnteringTPC startZR

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

Possible Shielding Positions

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

Effect of Thicker Shielding on Number of Primary Ions

- * up-stream shielding before or inside LumiCal doesn't reduce pair bg in TPC
- * thicker down-stream shielding after LumiCal does help: e.g. increase from 15 \rightarrow 30 or 45 mm

Magnetic Fields

- * compensating solenoid (–5T) ensures that integrated B_z seen by beam is 0
- * limited space available
 - $\rightarrow\,$ strong compensating magnet, limited detector solenoid
- transition between + 2T detector solenoid and 5T compensating solenoid is essentially a magnetic wall for low p_T e⁺⁻
 - $\rightarrow\,$ steered into the shielding just behind LumiCal

 * new proposal for alternative compensation scheme moves this strong compensating solenoid outside the detector doi:10.18429/JACOW-IPAC2024-TUPC68
 → more space available for compensation → relaxed limit on detector solenoid strength
 * Would there be any effect on beamstrahlung backgrounds?

Magnetic Fields

 test removing strong compensating solenoid field

* also remove the "screening field" for technical reasons

- also try introducing an "anti-DID" field a la ILD@ILC
 - \rightarrow small Bx to bend field lines (and therefore, low pT particles into outgoing beampipe)

[Daniel imagines that this will require adjustments in machine optics. He cannot judge its technical feasibility]

- * optimal anti-DID strength should depend on:
 - main solenoid field, crossing angle, \ldots
- * use ILD@ILC field map for anti-DID field simple scaling of its strength

Effect of Adding Anti-DID Field

antiDID ZatIP

* with the compensating solenoid, it doesn't help much \rightarrow "magnetic wall"

Effect of Adding Anti-DID Field

antiDID ZatIP

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

Effect of Adding Anti-DID Field

antiDID ZatIP

without compensating solenoid, it reduces BG by factor ~2 @ 2T, ~6 @ 3.5T
 clear advantage of higher field (only if anti-DID available)

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

Extend Length of Down-Stream Shielding

18

1. thicker shield after LumiCal x1/2.5

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

1. thicker shield after LumiCal x1/2.5

2. 2.0
$$\rightarrow$$
 3.5 T + anti-DID x1/2

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

1. thicker shield after LumiCal x1/2.5

2. 2.0
$$\rightarrow$$
 3.5 T + anti-DID x1/2

3. **longer** shield after LumiCal x1/2

1. thicker shield after LumiCal x1/2.5

2. 2.0
$$\rightarrow$$
 3.5 T + anti-DID x1/2

3. **longer** shield after LumiCal x1/2

overall, ~**10x** reduction in TPC BG compared to MDI_01_v00

What About 240 GeV?

- * Similar findings
- * Reduction by ~ a factor of **10** seems feasible

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

Conclusion

Collider	FCC-91	FCC-240	ILC-250
Detector model	ILD_FCCee_v01	ILD_FCCee_v01	ILD_15_v05
average BX frequency	30 MHz	800 kHz	6.6 kHz
primary ions / BX	26 0 k	82 0 k	450 k
primary ions in TPC at any time	$1.7 imes 10^{12}$ 11	1.4×10^{11}	$6.5 imes 10^{8}$
average primary ion charge density nC/m^3	6.4 0	.6 0 .54 0.	05 0.0025

*very rough estimates D. Jeans

primary ion density in TPC: 2500250 times higher at FCCee-91 than ILC-250 200 20 times higher at FCCee-240 than ILC-250

n.b. this comparison does not consider the secondary ions created in gas amplification

 \rightarrow almost certainly worse at circular collider due to "no" gating

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

Thank you for your attention!

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

Back up

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

Starting Point

ILD (for ILC) * ILC MDI

* Hybrid tracking layout

CLD (CLIC-like Detector) * FCCee MDI * All-silicon tracking

X0 Y= 0.010 [cm]

X0 Y= 0.010 [cm]

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

Ansatz

* Hybrid tracking layout

X0 Y= 0.010 [cm]

CLD (CLIC-like Detector) * FCCee MDI * All-silicon tracking

Ansatz: 1) Remove everything inside of the TPC from ILD2) Replace with CLD subdetectors

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

15th January 2025

X0 Y= 0.010 [cm]

Ansatz

ILD (for ILC) * ILC MDI

* Hybrid tracking layout

X0 Y= 0.010 [cm]

CLD (CLIC-like Detector) * FCCee MDI * All-silicon tracking

X0 Y= 0.010 [cm]

80 X [cm] 80 X [cm] slice0 X0 Entries 90000 10^{-1} 10⁻¹ 70 265.7 Mean x TPC 10⁻² 10^{-2} slice0 X0 Mean y 39.33 10⁻³ 60 10^{-3} Entries 90000 Std Dev x 22.7 10⁻⁴ 206.2 Std Dev v 22.41 Mean x 10⁻⁴ 50 28.65 10⁻⁵ Mean y 10⁻⁵ Sto Dev x 62.52 10^{-6} 10⁻⁶ Sto Dev y 40 29.65 10^{-7} 10⁻⁷ 10⁻⁸ 30 10⁻⁸ 10^{-9} 10⁻⁹ 20 10⁻¹⁰ 10-10 **10^{−11} 10**⁻¹¹ 10 10F 10-12 10⁻¹³ 10-13 0 10⁻¹⁴ 10⁻¹⁴ 10⁻¹⁵ -10 10⁻¹⁵ 50 100 300 Z [cm] 0 150 200 250 50 100 150 200 250 300 Z [cm] 1) Remove everything inside of the TPC from ILD

Ansatz: 1) Remove everything inside of the TPC from 1 2) Replace with CLD subdetectors

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

New Models or 2 Merging Strategies

ILD for FCCee **v01** – large TPC:

- * Leave TPC as large as possible
- * Squeeze Inner Tracker in between TPC and Vertex Detector

X0 Y= 0.010 [cm]

ILD for FCCee **v02** – small TPC:

X0 Y= 0.010 [cm]

- * Copy Inner Tracker from CLD
- * Shrink TPC to accommodate the IT

X [cm] 80 X [cm] 80 slice0 X0 slice0 X0 Entries 90000 10 10^{-1} 90000 70 Entries 70 Mean x 204.1 204.2 Mean x 10^{-2} 10^{-2} Mean y 27.12 27.17 Mean v 60 10^{-3} 60F 10^{-3} Std Dev x 65.1 Std Dev x 64.97 10-4 Std Dev v 30.29 10 Std Dev y 30.27 50 50 10^{-5} 10- 10^{-6} 10-6 40 40 10^{-7} 10^{-7} 10^{-8} 10-8 30 30 10^{-9} 10^{-9} 20 20 10^{-10} 10^{-10} 10^{-11} 10^{-1} 10 10 10^{-12} 10^{-12} 10-18 10^{-13} 10-14 10-14 10⁻¹⁵ 10-15 -10 -10 50 100 150 200 250 300 50 100 150 200 250 300 0 Z [cm] Z [cm] *Common MDI o1 v00 model description source

*Calorimeter and solenoid volumes were left unchanged, except for removed ECal Ring and LHCal

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

Overview of FCCee Models

15th January 2025

X0 Y= 0.010 [cm]

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

Overview of ILD Models

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

X0 Y= 0.010 [cm]

slice0 X0

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

Particles Which Induce TPC Hits

#primary ions in TPC induced per particle

Origin of Parent Particles

ILD_FCCee_v01 model (with field map) MDI exactly from MDI_o1_v00

production point of particles entering the TPC

Main points of origin:

- * In the plane containing the LumiCal
- * inner beampipe shielding

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

Birthplace of Particles Entering the TPC

hParticleEnteringTPC_startZR

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

Properties of Particles Which Induce TPC Hits

Number of Primary Ions Produced with Collision Rate

*** TPC integrates over many collisions**; maximum ion drift time ~ 0.44 s

- roughly estimate number of primary ions in the TPC volume (~42 m³) at any time, taking account of different collision rates
- * number of ions \approx primary ions/BX * BX freq * max drift time * 50%

[some ions already reached cathode]

Collider	FCC-91	FCC-240	ILC-250
Detector model	ILD_FCCee_v01	ILD_FCCee_v01	ILD_15_v05
average BX frequency	30 MHz	800 kHz	6.6 kHz
primary ions / BX	260 k	820 k	450 k
primary ions in TPC at any time	$1.7 imes10^{12}$	$1.4 imes 10^{11}$	$6.5 imes 10^8$
average primary ion charge density nC/m^3	6.4	0.54	0.0025

D. Jeans

Primary ion density in TPC:

- * 2500 times higher at FCCee-91 than ILC-250
- * 200 times higher at FCCee-240 than ILC-250

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

Gating

- * Infos: https://agenda.linearcollider.org/event/7390/timetable/
- * Mitigates "Ion Feedback Problem" \rightarrow distortion of reconstructed tracks
- * Gating foil which has GEM-like structure circa 1 cm before amplification
- * Optical aperture ratio > 80%
- * Goal:
 - High electron transparency in OPEN state (during train)
 - High ion blocking power in CLOSE state (during break)

CellIDEncodings: Current Situation

- * Each sensor cell has a unique CellID (64 bits, partially split into 2x32 bits in LCIO for storage, always uint64_t in EDM4hep)
- For tracking: only 32 bits to enumerate the sensor, leaving 32 bits for strips / pixels on each sensor (convention from LC)
- Important assumption: Only one convention for complete tracker!
 For now use ILD convention (need enough layer bits for TPC!)

DESY. Beamstrahlung Background in ILD@FCC-ee | Victor Schwan

CellIDEncodings: Food for Thought

- * Now is a good time to potentially rethink some of the LC conventions
- * Do we need / want CellIDEncodings that are the same for all subdetectors?
 - * Just define **system:5,side:-2** and leave the distribution of remaining bits for layer, module, sensor to each subdetector?
- * Are we happy with 32 bits up to the sensor, or do we need more? How many bits can we take from the 32 that are currently reserved for on-sensor ids?

The usual caveats apply:

* Available person power to actually act on any potential decision