The ALLEGRO detector concept and its full simulation

8th FCC Physics workshop (CERN, January 2025)

Giovanni Marchiori (APC-Paris CNRS/IN2P3) On behalf of, and with many thanks to, many colleagues working on ALLEGRO

The origin of ALLEGRO

- **2015**: start to think of noble-liquid EM calorimeter for future experiments
 - became part of FCC-hh reference detector (CDR in 2019, input for ESPPU2020)
- **2021**: after ESPPU, focus shifted to FCC-ee: noble-liquid ECAL concept adapted to lepton collider experiment, performance studies showed that it is very competitive compared to other proposals (Si/W, dual read-out)
 - Noble-liquid calorimetry became work-package inside CERN EP R&D and later part of DRD6 as WP2
- **2022**: <u>proposed</u> a detector concept based on noble-liquid ECAL and some "reasonable" choices for other sub-detectors
- **2023**: more teams joined, survey to find a name \rightarrow **ALLEGRO** (**A** Lepton Lepton collider Experiment with Granular Read-Out) was born
 - ALLEGRO website launched soon after: <u>https://allegro.web.cern.ch/</u>
 - ALLEGRO logo contest

Calorimeters for the FCC-hh

M. Aleksa¹, P. Allport², R. Bosley², J. Faltova^{1,3}, J. Gentil⁴, R. Goncalo^{4,5}, C. Helsens¹, A. Henriques¹, A. Karyukhin[°], J. Kieseler¹, C. Neubüser¹, H. F. Pais Da Silva^{1,4}, T. Price², J. Schliwinski⁷, M. Selvaggi¹, O. Solovyanov^{1,8}, R. Stein⁹, N. Topiline⁶, N. K. Watson², A. Winter², and A. Zaborowska¹

Calorimetry at FCC-ee

Martin Aleksa¹, Franco Bedeschi², Roberto Ferrari³, Felix Sefkow⁴, and Christopher G. Tully⁵

- ¹ CERN, EP Department, Geneva, Switzerland
- ² INFN, Sezione di Pisa, Italy
- ³ INFN, Sezione di Pavia, Italy

20 Dec 2019

- ⁴ Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- ⁵ Princeton University, Department of Physics, Princeton, NJ, United States

Received: September 2, 2021/ Revised version: September 2, 2021

allegro noun [C] • MUSIC • specialized UK ◀) /əˈleg.rəʊ/ US ◀) /əˈleg.roʊ/ plural **allegros**

a piece of music that is played in a fast and energetic way

The ALLEGRO detector concept(s)

- From the beginning many different ideas/options \rightarrow very open for new ideas
 - Envelopes need to be optimised/adapted to chosen technologies
 - But had to start with one version which was implemented into FCC SW •

The ALLEGRO detector concept: common features and reference design

- **Vertex** detector
- Tracking system
- Si wrapper
- Highly granular **noble-liquid ECAL** inside solenoid
 - Excellent resolution, linearity, stability
 - Optimised for particle flow
- **Solenoid** (B=2T) sharing cryostat with ECAL
 - Light coil (0.76 X_0) + low-material cryostat < 0.1 X_0
- High granularity HCAL
- **Muon** Tagger / Instrumented Iron Yoke
- Detector choices and design optimisation not complete yet

ALLEGRO today

Current situation

- Strong **noble-liquid ECAL** team collaborating within <u>DRD6</u> WP2
- Other sub-detectors not yet defined
 - very open for contributions, many Eols received
 - leaning towards gaseous main tracker; various options for muon tagger \bullet
- There is a "reasonable" choice for the other sub-detectors implemented in FCC SW (sketch in previous slide, details in next one), but different choices can be tried due to modularity of FCC SW

Next steps

- Now: Eol for ESPPU2025: ALLEGRO as high-perf. general-purpose detector concept for FCC-ee. While concept is centered around nobleliquid ECAL, technology choices for other sub-detectors are fully open
- Coming years:
 - **R&D** on subdetectors (optimisation studies, prototypes, testbeams..)
 - and once we enter the **TDR phase** (possibly in the coming 5 years)

Work Package 2: Liquified Noble Gas Calorimeters

4.1 Description

16:20 → 18:0

Future experiments at e^+e^- , hadron or muon colliders have an ambitious physics program. The role of calorimetry will be to precisely measure particle energies, complement the tracking system in an optimal particle-flow event reconstruction, contribute to particle identification and - where necessary - provide efficient pile-up rejection. Such functionalities will only be achievable with excellent electromagnetic energy resolution, high lateral and longitudinal granularity and - in some cases (e.g. pile-up rejection) - excellent time resolution. Calorimetry based on liquified noble gases

0	Expressions of Interest	() 1h 40m	Vertex Detector - Strasbourg
	Interest of Swiss Groups in Several Detector Areas	© 10m	Speaker: Jeremy Andrea (Centre National de la Recherche Scientifique (FR))
	Speaker: Ben Kilminster (University of Zurich (CH))		FCCee-SEE
	A Swiss-Inter		
			ECAL - UT-Austin
	Interest of MPP Munich Group	(\$ 5m	Speakers: Peter Onyisi (University of Texas at Austin (US)), Timothy Robert And of Texas at Austin (US))
	Speaker: Oliver Kortner (Max Planck Society (DE))		20241122
	🕒 EOI_2024		
			TileCal HCAL - CERN
	Detector Simulations - B.K.C. College Kolkata	() 5m	Speakers: Henric Wilkens (CERN), Michaela Mlynarikova (CERN), Rute Politica et al. (DEN)
	Speaker: Avinanda Chaudhuri (CERN)		Instrumentation and Experimental Particle Physics (PT))
	🔁 Kolkata-Ind		Eol_ALLEG
	Straw Tracker Michigan	Q 5	Muon Drift Tube Detector - Michigan
	Straw Hacker - Michigan	9 5m	Speaker: Jianming Oian (University of Michigan (US))
	Speaker. Sunjie Zhu (Oniversity of Michigan (05))		
	Straw-UM		
	Gaseous Tracking - BNL	(§ 5m	MicroMegas Muon Detector - Roma 3
	Speaker: George lakovidis (Brookhaven National Laboratory (US))		Speakers: Biagio Di Micco (Universita' degli Studi di Roma Tre e Istituto I
	2024_11_2		Nucleare (INFN)), Mauro Iodice (INFN - Sezione di Roma Tre)
			🔁 Allegro_Mi
	Wire Chamber - IJCLab	() 5m	MigroMorro Muon Dotactor - INEN Napoli
	Speaker: Gabriel Charles (Université Paris-Saclay (FR))		
	Allegro_Ex		Speakers: Mariagrazia Alviggi (University Federico II and INFN, Naples (I Pietra (University Federico II and INFN, Naples (IT)), Paolo lengo (INFN)
	Silicon Detectors for Allegro - BNL	(9 5m	Muon Detector based on Scintillators - Roma 1
	Speaker: Alessandro Tricoli (Brookhaven National Laboratory (US))		Speakers: Claudio Luci (Sapienza Universita e INFN, Roma I (IT)), Fabio / Universita e INFN, Roma I (IT)), Massimo Corradi (Sapienza Universita e
	Tricoli_BN		Riccardo Vari (Sapienza Universita e INFN, Roma I (IT)), Stefano Rosati (
	Gaseous and Silicon Detectors - Weizmann Institute	(0.5m	FISICA NUCLEARE SEZIONE OI ROMA 1), Sterano veneziano (INEN e UNIVERSI
	Speaker: Shikma Bressler (Weizmann Institute of Science (II.))	0.000	Roma-I-Mu
	Wis off		TDAQ - CERN
	e mo.pa		

Speakers: Aimilianos Koulouris (CERN), Rosa Simoniello (CERN

down-selection to baseline options and formation of a proto-collaboration once a decision on FCC-ee has been taken

🕲 5m

Pedro (Laboratory of	() 5m
	() 5m
Nazionale di Fisica	(§ 5m
IT)), Massimo Della	() 5m
Anulli (Sapienza INFN, Roma I (IT)), (Istituto Nazionale di	() 5m

ALLEGRO full simulation in FCC SW

- **Full implementation** of "reference" detector **model** in DD4hep/key4hep recently **completed**
 - **Tracking** system taken from IDEA 'as is'
 - vertex detector with curved sensors
 - drift chamber z-extent un-changed (to be optimized)
 - silicon wrapper similar to VTX but with planar sensors \bullet
 - **Noble-Liquid ECAL** with inclined absorbers
 - Baseline: straight Pb+Steel absorber, growing sensitive gap \bullet
 - Turbine geometry in endcaps
 - Many parameters (geometry, readout, materials) can be customised
 - **Coil** in ECAL outer barrel cryostat
 - **TileCal HCAL** tuned to FCC-ee (barrel and endcaps)
 - **Muon Tagger** as sensitive cylinder/disks (scintillators) mainly a place holder
- **Next:** reconstruction, physics performance studies, detector design optimisation

ALLEGRO full simulation based on DD4hep & Geant4, fully integrated within FCCSW/Key4hep/EDM4hep ecosystem

The ALLEGRO detector concept and its full simulation - Giovanni Marchiori - 6

ALLEGRO full simulation in FCC SW

The ALLEGRO detector concept and its full simulation - Giovanni Marchiori - 7

ALLEGRO reconstruction: tracking

- Tracking in current ALLEGRO simulations is still in the works
 - **Hits** are available, produced by applying Gaussian smearing to truth-level hits in trackers
 - **Track** reconstruction from hits not yet implemented
 - Significant work ongoing on **ML-based tracking** for IDEA, could be ported with little effort to ALLEGRO once finalised

As a proxy, for the time being, to enable starting p-flow reconstruction studies, reconstruction-level tracks are produced by cloning the generator-level tracks

ALLEGRO reconstruction: calorimetry

- sampling fraction correction
 - Same algorithm works for all calorimeter sub detectors (ECAL and HCAL barrel and endcaps)
 - - \bullet based on detector geometry and detailed electric field simulations of the cells
 - \bullet
- **High-level reconstruction:** two clustering algorithms implemented so far, fixed-sized and topological clusters
 - Fixed-size: scan $\theta x \phi$ space with sliding window to identify local maxima ● in energy deposition => build clusters of fixed size
 - Topological: find seed cells (S/N>T_{seed}) attach neighbouring ones (S/N > T_{neighbours}) => build connected clusters of variable size
 - Both can use cells from only one subsystem (e.g. ECAL-only = "EM" • clusters) or both (ECAL+HCAL => seeds for jet reconstruction)
 - SW implemented for all configurations; topoclustering working for ECAL/HCAL ulletbarrels since long, implementation for endcaps converging recently
 - CLUE algorithm has also been ported to ALLEGRO but not much tested

Digitisation: simple sum of G4 hits within given readout cell (defined by the detector readout granularity), rescaled by a

Recent addition of past months: emulation of noise and x-talk in ECAL barrel (to be followed soon by other sub detectors)

Noise: addition of random Gaussian-distributed noise energy per cell, starting from calculations of expected noise

Crosstalk: redistribute energy among neighbouring cells based on crosstalk measured in PCB prototypes

ALLEGRO reconstruction: calorimetry

260																											260	
255									•	• 3	•		••	•	•										1		255	
250									•	•	•		•	•													250	
245										•	•		•••		•												245	
240										•		1	• •		•	•											240	
									•		•		•		•													
235									•	•	•		• •		•	•											235	
230										•	•		• •		•	•											230	
										•			••		•													
225											•			•		•											225	
220																											220	
																	-	_				-	_	 				
				-:	20			-10					0				1	0			20			30				

ECAL-only SW cluster (photon)

Joint ECAL+HCAL topocluster (pion)

Calorimeter performance: energy calibration

- **BDT-regression**-based calibration implemented in Gaudi
 - Inputs: energy fraction in each layer, total energy, cluster barycentre theta-phi; target: E_cluster/E_particle
 - Inputs calculated directly within <u>Gaudi algorithm</u>, saved as cluster decorations => no need to persist cell-level info
 - BDT trained with <u>external tool</u>, output saved to portable ONNX format, that can be read out in Gaudi
 - Calibration can be applied by another Gaudi algorithm in all subsequent simulations and saved as cluster decoration

Calorimeter performance: photon identification

- **BDT-based** photon ID algorithm implemented in Gaudi

 - Target: binary classification with maximum area under curve
 - BDT trained with <u>external tool</u>, output saved to portable ONNX format, that can be read out in Gaudi
 - Inference applied by another <u>Gaudi algorithm</u> in subsequent simulations and BDT score saved in output
 - Work ongoing to assess impact of detector design, crosstalk, noise ...

BDT ROC Curve (sliding-window clusters)

ound (pi0) Rejection (1-efficiency)		
Backg	0.2 - L1 as strip AUC: 0.929 - L2 as strip AUC: 0.944 - L3 as strip AUC: 0.952 - L4 as strip AUC: 0.950 - L5 as strip AUC: 0.942 - 0,0 0.2 0.4 0.6 0.8 Signal (photon) efficiency	1 ciency

Inputs: longitudinal/lateral shower shapes from cell energies, calculated/saved as shape parameters by Gaudi algorithm

The ALLEGRO detector concept and its full simulation - Giovanni Marchiori - 12

ALLEGRO reconstruction: towards particle-flow

- **Next major milestone:** exploit all sub detectors at once within **particle-flow** approach
 - Work ongoing in this direction adapting PandoraPFA-based tools in Key4hep/FCCSW to ALLEGRO
 - Currently, use charged gen-level particles instead of (not available yet) reco particle
 - Started with ECAL and HCAL barrels
 - Used CLD working implementation as a starting point and reference for comparing to Many details (settings, calibrations, identification criteria ...) to be fully understood/properly set/adapted to

 - Encouraging initial results on $e/\gamma/KL$ PFO objects, calibration/identification to be improved

Conclusion

- ALLEGRO proposed as high-performance general-purpose detector concept for FCC-ee
 - we will submit an EoI for the ESU
 - a strong noble-liquid ECAL team (20 institutes) + lots of interest on other subdetectors
 - in coming years we should further develop ideas keeping physics requirements in mind, build prototypes & implement them into FCC SW with realistic performance
- "Paper" version of reference design is now implemented in full-sim within FCCSW
 - Can emulate detector response and (overlay effects such as noise / x-talk
 - Alternative subdetector ideas can be easily implemented
- Reconstruction is actively being developed with very good recent progress
 - Tracking in drift chamber (IDEA), ML-based tracking
 - Basic reconstruction algorithms for calorimeters in place, effort on p-flow ramping up
- With realistic full-sim and reconstruction in place, we can spend less time on software and more on physics, and have more stable results, in coming years

<u>M. Aleksa,</u> N. Morange, <u>M.A. Pleier</u>

 \rightarrow Working on ALLEGRO is building our future! Many interesting challenges ahead of us! Come and join us!

More details

ECAL barrel

Baseline design (exact parameters subject to further optimisation):

- 1536 straight inclined (50°) 1.8 mm Pb absorber plates
- $R_{in} = 216 \text{ cm}, R_{out} = 256 \text{ cm} => 40 \text{ cm} \text{ deep} (\approx 22 \text{ X}_0)$
- Multi-layer PCBs as readout electrodes => # layers and granularity customisable
- 2 x 1.2 mm LAr gaps
- 12 = 1 (1.5 cm) + 11 (3.5 cm) longitudinal compartments (L0 = presampler)
- $\Delta\theta \sim 10$ (2.5) mrad for regular (L1 strip) cells,
- $\Delta \phi \sim 8 \text{ mrad}$
- Possible Options
 - LKr or LAr active medium, W or Pb absorbers,
 - Al or carbon fibre cryostat
 - Absorbers with growing thickness

The ALLEGRO detector concept and its full simulation - Giovanni Marchiori - 16

ECAL endcap

- in the simulation ("Turbine design"), see <u>here</u> for alternative ideas
 - similar to barrel design, with many thin absorber plates
- symmetric in ϕ •
- readout from high-|z| face •
- Issue: increase in the size of the LAr gaps
 - mitigated stacking several cylinders ۲

Endcap design more complex than barrel. A few preliminary ideas on the table. Showing here the baseline one, implemented 3 mm thick

HCAL barrel

- Currently being simulated: TileCal-like design
- 5mm steel absorber plates alternating with 3mm scintillator plates
- 128 modules in ϕ , 2 tile/module $\rightarrow \Delta \phi = 0.025$
- $\Delta \theta \sim 0.022$ (grouping 3-4 tiles),
- 13 radial layers (4x5 cm, 6x10 cm, 3x20 cm)
- Removed the Pb plates compared to FCC-hh design (HCAL acts as return yoke for the central solenoid)
- FCC-ee TileCal geometry and segmentation is available in k4geo
- Work ongoing on the geometry optimisation (different scintillating materials, different absorbers, and dimensions/segmentations in progress, won't report about it today) and calibration

