Noble Liquid Calorimeter ALLEGRO Ecal

Nicolas Morange, IJCLab

FCC PED, 15/01/2025

Laboratoire de Physique des 2 Infinis

Noble liquid Ecal

- Decades of success at particle physics experiments: from R806 to ATLAS
 - Mostly LAr, a bit of LKr

• An appealing option for FCC-ee

- Good energy resolution
- High(-ish) granularity achievable
- Linearity, uniformity, long-term stability
- Easy to calibrate

Excellent solution for small systematics

- Lots of interesting studies / R&D to do
 - Optimization for PFlow reconstruction
 - Achieving very low noise
 - Lightweight cryostats to minimize X₀
 - Designing for improved energy resolution

Granularity of Noble Liquid Calorimeters

- Calorimeter design:
 - Granularity of the calorimeter
 - \Leftrightarrow granularity of the electrodes
- ATLAS: copper/kapton electrode
 - Traces to read out middle cells take real estate on back layer
 - Cannot really increase granularity
- FCC-ee requirements
 - High jet energy resolution needed
 - Particle flow algorithms take advantage of much finer granularity
- Solution for Noble Liquid calo for FCC
 - Multi-layer PCB to route signals inside
 - Allows for ~ ×10 ATLAS granularity

Allegro Barrel Design

Design driven by the solution used for electrodes

- 1536 straight inclined (50°) 1.8mm Pb absorber plates
- Multi-layer PCBs as readout electrodes
- 1.2 2.4mm LAr gaps (LKr option): ~20% sampling fraction
- 40cm deep (22 X₀)
- $\Delta \theta$ = 10 (2.5) mrad for regular (strip) cells, $\Delta \phi$ = 8 mrad, 11 longitudinal layers

PCBs as electrodes: great flexibility

- Number of layers and granularity of layers fully optimizable
- Projective cells
- Lots of room for optimisation !

Progress on electrodes prototypes

Explore tradeoffs: max granularity / capacitance (noise) / cross-talk

• First large-scale prototype at CERN

- Explore many options for grounding, for shields
- Few per-mille cross-talk achievable with long shaping
- Latest prototype at IJCLab
 - All layers readout at the back
 - Best for material budget, worse for noise and cross-talk
 - New shielding ideas
 - Developed system for automated measurements
 - Detailed understanding of cross-talk and capacitances

channels ID

Next generation of electrodes

New large-scale prototype in fabrication at CERN PCB Lab (Jan 2025)

- Based on all lessons learned with previous generations
 - All channels readout at the back
 - Connectors to use same automated test system as IJCLab
 - Tuned widths and thicknesses
 - Optimization of stack-up and line impedance

• Still investigating options

- Many towers are different, varying one parameter at a time (widths, thicknesses)
- Additional shielding (à la IJCLab)
- Traces ordering in towers (impact on cross-talk expected)
- Position of "strip" layer

6

Absorbers

- Absorbers are 1.8mm lead plates sandwiched between stainless steel sheets, glued by prepreg
 - Absorbers fabricated with 0.1mm and 0.05mm SS sheets
 - Deformations appear in cold tests at 77K with 0.05mm sheets only

• CTE investigations

- Deformations probably due to CTE differences ...
- Investigated using strain gauges
- 0.1mm SS sheets is now default

Support structures and general design

Significant progress on general mechanics design in 2024

- How to hold the electrodes and absorbers?
 - Tight space
 - High precision
 - Minimal X_0 in front of calo \Rightarrow use fiberglass for inner ring
- Design and 3D-printed prototypes to check feasibility
 - Small screws: need Torx over Allen

Support structures II

- Overall structure is given by support rings, external and internal
 - Inner ring: mostly positioning, need to be as 'transparent' as possible
 - External ring provides most of the support. Sits on rails in the cryostat
- Calculations on the overall structure inform needed size of the H beams

- Then: need space for cables and cooling pipes to go through
 - First attempts at using ANSYS to calculate a hollow structure to make room

Spacers

Spacers needed to ensure well controlled liquid argon gap

• First idea studies: simple cylindrical spacers

- Mechanical simulations: need >6mm spacers, placed in corners of readout cells at most 20cm apart from each other
- 5 different heights due to LAr gap variation
- Equivalent of 0.15% of LAr volume

• Alternative ideas (meshes) to be studied

Ideas on cold readout electronics

ALLEGRO Ecal barrel: ~2M channels

- Warm electronics outside of cryostat: 2M signal cables to route
 Cold electronics: need room for boards + HV, powering and signal cables
 Note: number of cables greatly reduced through multiplexing
 First idea: cold FEB along radial direction. Adapter boards to connect to electrodes and do the summation (2 electrodes in phi are summed)
 - Opens many new questions!
 - Space needed in

 - support rings Cooling aspects Amount of data trans per channel has large impact on number of cables needed
 - Stresses need for 0-suppression

- Cold Preamps: 2024 first design work by 2 teams (based on Dune cold ASIC or based on CMS HGCROC)
 - First 'test structures' should be available in 2025 for testing

FCC PED, 15/01/2025

Simulations and design optimisation: granularity

See also <u>Giovanni's talk</u>

- Fixed-size and topo-clustering available for a while
- Electron and photon energy reconstruction using BDT regression
- 2024: BDT for photon / π^0 classification
 - Allows to investigate EM granularity
 - Indicates that "strips" layer would be better placed in 3rd or 4th layer instead of 2nd layer (shower has not started enough yet)
 BDT ROC Curve (sliding-window clusters)

Simulations and design optimisation: improvements

• Inclusion of noise and crosstalk (energy sharing) in the digitization

Tiny impact on photon / π^0 classification, even with pessimistic cross-talk figures !

025

End-caps: turbine design

Turbine design: adaptation of barrel idea to end-caps regions

• Nice properties:

- Particles should traverse many thin absorber/sampler/ electrode unit cells (for spatial and energy resolution)
- o Uniformity in φ
- Ability to read out solely from the high-|z| face
- Can be constructed with multiple copies of a small number of electrode/absorber designs

End-caps design progress

- Require 3 nested wheels to limit gap widening effect • $r_0/r_1 = (275/42)^{1/3} \approx 1.9$
- Use tapered (variable-thickness) absorbers for more uniform sampling fraction
 - Exploring further ideas to improve resolution
- Progress in computation of calibration constants

Conclusions

- Impressive progress on **all fronts** of the ALLEGRO Ecal R&D in 2024
 - Strengthens the idea that it is a **realistic** concept for **high-performance** calorimetry at FCC-ee
- Electrodes: Noise / cross-talk trade-offs quite well understood
 - Next prototypes will allow to finetune final choices for the barrel
- Mechanics: lessons on absorbers stackup and developed concepts for the support structures and the assembly process
 - Can be readily adapted to our first testbeam module
- Simulations: full simulation is now fairly complete
 - First lessons for granularity optimization
 - Further studies require integration with HCal / PFlow
 - Progress on mechanics and cryostat and solenoid require some changes to the ddsim description
- End-caps concept is developing
 - Studies on e.g specific electrode designs can now be started

FCC PED, 15/01/2025

Supplementary Material

Allegro detector concept

A Lepton coLlider Experiment with Granular Read-Out

- Vertex Detector:
 - MAPS or DMAPS possibly with timing layer (LGAD)
 - Possibly ALICE 3 like?
- Drift Chamber (±2.5m active)
- Silicon Wrapper + ToF:
 - MAPS or DMAPS possibly with timing layer (LGAD)
- Solenoid B=2T, sharing cryostat with ECAL, outside ECAL
- High Granularity ECAL:
 - Noble liquid + Pb or W
- High Granularity HCAL / Iron Yoke:
 - Scintillator + Iron
 - SiPMs directly on Scintillator or
 - TileCal: WS fibres, SiPMs outside
- Muon Tagger:
 - Drift chambers, RPC, MicroMegas

Outstanding Physics ⇒ Strong Requirements on Detectors

Calorimeters for HET factories

An extensive set of requirements

- Energy resolution: "only" for photons and neutral hadrons
 - But: ideally photons as low as 200 300 MeV
- Dynamic range: 200 MeV 180 GeV
 - vs LHC: 6 TeV jets !
- Granularity: PID, disentangle showers for PFlow
 - But: how granular exactly ?
- Hermeticity, uniformity, calibrability, stability
 - Low systematics for precision measurements
 - Complex system-level engineering questions
- No need to be particularly fast
 - But: can precise timing help in reconstructing showers more accurately ?

A quest for ultimate jet energy resolution

PFlow PFlow PFlow

- Target: $\sigma(E)/E = 30\%/\sqrt{E}$ (GeV)
 - Typical figure of merit: W/Z boson separation
 - Actual use: variety of hadronic measurements
- What granularity do we really need at HET Factories ?
- New calos concepts bring new ideas (crystals DR study)

- Total

3

50

ms₉₀/E_{jet} [%]

---- Confusion

150

100

200

250

Other

---- Resolution ---- Leakage

EW factories unique challenges

FCC-ee: O(10¹¹) B and T at 45 GeV !!!

- Some physics channels require very high EM resolution
- τ physics: reconstructing the decays
 - Means π^0 reconstruction and ID
 - Count close-by π⁰
 - Granularity
- BSM, e.g ALP searches
 - Photon resolution, photon pointing

$\begin{array}{c} Recon \to \\ Gen \downarrow \end{array}$	$\pi^{\pm}\nu$	$\pi^{\pm} \pi^0 \nu$	$\pi^{\pm} 2\pi^0 \nu$	$\pi^{\pm} 3\pi^{0} \nu$	$\pi^{\pm} 4\pi^{0} \nu$		
$\pi^{\pm} \nu$	0.9560	0.0425	0.0010	0.0003	0.0002		
$\pi^{\pm} \pi^0 \nu$	0.0374	0.9020	0.0586	0.0016	0.0002		
$\pi^{\pm} 2\pi^0 \nu$	0.0090	0.1277	0.7802	0.0808	0.0022		
$\pi^{\pm} 3\pi^{0} \nu$	0.0036	0.0372	0.2679	0.5972	0.0910		
Table: Each row shows the fraction of e.g. $ au o \pi^{\pm} u$ decays classified							

as each of the considered channels

Many options on the table, for both Ecal and Hcal

Detector technology	E.m. energy res.	E.m. energy res.	ECAL & HCAL had.	ECAL & HCAL had.	Ultimate hadronic
(ECAL & HCAL)	stochastic term	constant term	energy resolution	energy resolution	energy res. Incl. PFlow
			(stoch. term for single had.)	(for 50 GeV jets)	(for 50 GeV jets)
Highly granular					
Si/W based ECAL &	15-17%[12,20]	1% [12, 20]	45-50~%~[45,20]	$\approx 6\%$?	4% [20]
Scintillator based HCAL		394			De fest Fester
Highly granular					8000 m
Noble liquid based ECAL &	$8-10\% \ [24,27,46]$	$< 1 \% \ [24, 27, 47]$	pprox 40 % [27, 28]	pprox 6% ?	3-4% ?
Scintillator based HCAL					
Dual-readout	11 % [49]	< 1 % [48]	$\sim 30 \%$ [48]	4 - 5% [40]	$3 - 10^{-7}$
Fibre calorimeter	11 /0 [40]	< 1 /0 [40]	~ 30 /0 [40]	4 = 0.70 [49]	0 - 4 / 0:
Hybrid crystal and	3 % [30]	< 1 % [30]	pprox 26 % [30]	5-6%[30,50]	3-4%[50]
Dual-readout calorimeter					

- All options feature good jet energy resolution
- Varying Ecal resolution \Rightarrow Highest EM resol required for B physics
- Varying segmentation: PFlow, shower shapes, cluster pointing
- Other characteristics: Operational stability, cost

Example: Stability of ATLAS LAr Energy Scale

Noble-liquid calorimetry: High intrinsic stability

- Pedestal stability < 100 keV
- Gain stability 2.6x10⁻⁴
- Parameters monitored in daily calibration runs
 - Changes in constants needed only about 1 / month
- Stability of the energy scale of 2x10⁻⁴
 - Visible on $Z \rightarrow ee$ invariant mass and E/p

Cryostat and feedthroughs

Low mass cryostats

- Minimise dead material in front
 - Use of sandwiches with carbon fiber
 + Al honeycomb
 - Synergy with progress in aerospace
- CERN R&D: address CFRP/Metal interfaces
- Promises for "transparent" cryostats: few % of X₀ !

High-density feedthroughs

- Aim for ~ ×5 density and ~ ×2 area wrt ATLAS
- Successful R&D on connector-less feedthroughs at CERN
 - 3D-printed epoxy resins structures with slits for strip cables, glued to the flange
 - Leak tests and pressure tests at 300 K and 77 K

Energy resolution: design options and noise

- Constant term
 - Hermeticity, low dead material, uniformity
- Sampling term: improve sampling fraction
 - Optimise gap size, sampling fraction, active and passive material
 - Explore LAr \Rightarrow LKr, Pb \Rightarrow W
 - between 5% and 7.5%
- Noise term: readout electronics
 - Want: measurement of 200 MeV photons, S/N>5 for MIPs
 - Longer shaping time wrt ATLAS (200 ns) helps a lot
 - Cold frontend electronics in the cryostat would provide noiseless readout

$$N\sim C_d \sqrt{rac{4kT}{g_m au_p}}$$

