# Si & SiPM-on-Tile

### in the CMS High-Granular Calorimeter (HGCAL)



8<sup>th</sup> FCC physics workshop'25

Matthias Komm on behalf of the CMS Collaboration



### Introduction

- HL LHC luminosity will reach  $5-7.5 \times 10^{34} cm^{-2} s^{-1}$ = 4x higher than currently!
- Up to 200 pileup events expected
- LHC detectors have to be upgraded!

- CMS high granularity calorimeter (HGCAL)
   = entirely new calorimeter in both endcaps
  - **–** Covers  $1.5 < |\eta| < 3$
  - Electromagnetic & hadron calorimeter parts
  - Finely-segmented & radiation-hard
  - Contributes to event trigger decision



### HGCAL records showers in 5D!

- Energy measurement
  - Calibrated using MIP signals
  - **Dynamic range:** 2 fC-10 pC
  - Measuring energetic
     jets: O(10k) MIPs
- Spatial precision
  - Large number of channels (6M) to resolve shower particles
  - <sup>–</sup> Varying cell sizes:  $0.5 30 \,\mathrm{cm}^2$
- Timing precision
  - Important for pileup mitigation
  - Precision:  $\mathcal{O}(25 \, \mathrm{ps})$  for energetic showers





### Composition

- CE-E: Electromagnetic calorimeter
  - Hexagonal silicon modules
  - $^{ullet}$  Cu, CuW, Pb absorbers, 26 layers (  $pprox 28 X_0$  )
- CE-H: Hadronic calorimeter
  - Hexagonal silicon modules (similar as CE-E)
  - Scintillator tiles in regions with lower radiation (<  $5 \cdot 10^{13} n/cm^2$ ) w/ silicon photomultipliers (SiPMs) for readout
  - Cu/Steel absorbers, 21 layers (  $pprox 10\lambda$  including CE-E)
- Key parameters
  - 6M silicon channels from 26k modules (620m<sup>2</sup>)
  - 240k SiPM-scintillator channels from 3.7k tileboards (370m<sup>2</sup>)
  - Cooled to -30°C using two phase CO<sub>2</sub> cooling
  - 220t per endcap



### Silicon modules

Hexagonal shape to maximize wafer usage

- Two major layouts to equalize occupancy
  - <sup>–</sup> High-density (HD): 432 channels  $0.5 \,\mathrm{cm}^2/\mathrm{pad}$ ; 6 HGCROC readout chips
  - Low-density (LD): 192 channels  $1.2 \, \mathrm{cm}^2/\mathrm{pad}$ ; 3 HGCROC readout chips
  - 9 partial layouts for edges
- Complex 6-fold rotational geometry



# SiPM, Tiles & Boards

SiPM-on-tile originally developed by CALICE for e<sup>+</sup>e<sup>-</sup>

- Trapezoidal scintillator tiles (1.25°)
  - Wrapped in reflecting foil
  - 3mm thickness
  - Size increases radially from 2 to 5.5cm
  - Cast/machined or injection-molded
- SiPMs
  - Radiation-tolerant & low dark-rate after irradiation

M. Komm - Si & SiPMs in the CMS HGCAL

- High photon detection efficiency
- Includes UV-LED system for initial calibration
- ➤ Tile boards
  - 8 main geometrical form factors
  - Typically 8 x 8 = 64 tiles/SiPMs per board (requires only 1 HGCROC readout chip)



**MPPCs** 

38

8

**B12** 

9

Slide 6

10

8

# Overview: DAQ & trigger data flow



- Shared readout chain between silicon and SiPM-on-tile modules
- Trigger links continuously readout at 40MHz
- DAQ links read only on positive trigger decision (~750kHz)
- eLinks operate at 1.28 Gb/s; optical links at 10.24 Gb/s; 100 Gb/s data-to-surface links (120x)

### HGCROC: Front-end readout ASIC

- Developed by <u>OMEGA</u>
- Digitizes charge & time information
- <sup>-</sup> Up to 72 channels in two chip halves
- Chip configured via I2C
- Clock (320MHz) & trigger signals received via fast control
- 3x 10b signals
  (ADC, TOT & TOA)
- Compute energy sums for trigger decisions (2x2 or 3x3 cell sums)
- Adjustable gain
- Charge injection for calibration
- Outputs: 2 DAQ & 4 trigger eLinks



# Engines & Wagons for silicon modules

#### Modular design

- Passive (LD)/active (HD)
   wagon board connects
  - 1–3 modules
- various shapes as needed
- Engine board connects
   2 wagon boards
- single design for all
- Concentrators (ECONs) apply zero-supression & compress DAQ/trigger data



# Engines & Wagons for silicon modules

#### Modular design

- Passive (LD)/active (HD)
   wagon board connects
  - 1–3 modules
- various shapes as needed
- Engine board connects
  2 wagon boards
- single design for all
- Concentrators (ECONs) apply zero-supression & compress DAQ/trigger data

complex PCB designs







# Wingboard & Motherboard for tilemodules

- Passive wingboard connects to 5 tileboards radially via Twin-ax cables
- Motherboard with concentrators (ECONs)
- Optical link via VTRx+ to backend (Serenity)



# SiPM module during testbeam

#### ➢ MIP pulse shape

- Here: read out time stamp from beam trigger system
- MIP signal visible across 3 bunch crossings



#### Dynamic range

- Read ADC at max. pulse
   when signal is small (~10 MIPs)
- Higher signals covered by time-over-threshold (TOT)
- ADC at previous bunch crossing read out for pedestal subtraction





M. Komm - Si & SiPMs in the CMS HGCAI

### Readout chain in action

- SPS-H2 testbeams in Summer'24
   (120 200 GeV muon & electrons)
- Setup
  - 2 layers of silicon layers with 3 modules
  - 2 tileboards
  - Separate readout systems for silicon & tileboards; later combined



### Results

- <sup>-</sup> First readout of trigger data stream from combined silicon + tileboard system
- Using Serenity-Z1.2 VU7P as "mini" backend







- <sup>–</sup> Plan to switch to Serenity-S1.2 VU9P soon
- Stable operation also in 3T magnetic field (3 field orientation tested)

### After backend: HGCAL offline software

- Total HGCAL event size 2.5-3.5 MB (~40% of CMS total event size)
- Clever algorithms & fast processing required!



RECO

### Production at scale

High channel count = a challenge on all levels

- <sup>–</sup> Production, test, calibration, software, management
- Each step requires high degree of automation
- 2'000 boards to be produced at one site

From AHCAL to HGCAL

x4 faster tile wrapping (4/min) x10 faster mounting (4  $\rightarrow$  40/day)



## Summary

HGCAL

- New CMS calorimeter for HL LHC upgrade
- High granularity: 6M channels
- <sup>-</sup> 5D showers: energy, position, timing
- Trigger (40MHz) & DAQ (750kHz) data stream
- Two technologies
  - Silicon & SiPM-on-tile modules
- Data readout chain
  - Common readout ASIC
  - Common readout chain
  - Common testsystems
- Status & plans
  - <sup>–</sup> Moving to mass production in 2025
  - Installation in 2028
  - Operation in 2030 for at least 10 years

Successfully tested in SPS testbeam!









