Crystal (or homogenous) calorimetry for the FCC - Status and Plans of CalVision/MaxiCC

Thomas Anderson, Andrea Benaglia, Karl Bue, Marcello Campajola, Wonyong Chung, <u>Grace Cummings</u>, Tim Edberg, Sarah Eno, Marco Francesconi, Giovanni Gaudino, Liang Guan, Yuxiang Guo, Bob Hirosky, Hayden Hollenbeck, Alberto Orso Mario Iorio, Daniel Levin, Alexander Ledovskoy, Hui-chi Lin, Marco Lucchini, Stefano Moneta, Sara Nabili, Mekhala Paranjpe, Jianming Qian, Jon Wilson, Jessaly Zhu, Junjie Zhu...

And many others I have missed!

8th FCC Physics Workshop, 15 January 2025

Dual Readout in crystals: CalVision/MaxiCC

- Homogeneous crystal calorimeters promise excellent electron/γ energy resolution
 - \circ but have poor energy resolution for hadrons
- Dual readout (DR) technique
 - quantify the electromagnetic fraction of hadronic showers via Cherenkov light
 - Event-by-event response correction possible
 - recover hadron energy resolution in a crystal layer

S. Lee, M. Livan, and R. Wigmans, Rev. Mod. Phys. 90, 025002

SCEPCal Overview: the target concept

Segmented Crystal Electromagnetic Precision Calorimeter

SCEPCal Overview: the target concept

Fermilab

Segmented Crystal Electromagnetic Precision Calorimeter

How to separate Cherenkov and Scintillation light

Wavelength Filters

Gate 1 Gate 2 1.4 0 Relative intensity [a.u.] Scintillation **PbWO**₄ Cherenkov ransmittance (2 cm) 1.2 ransmittance (20 cm) FBK NUV-HD SIPM PDE FBK RGB SIPM PDE -20 PMT signal (mV) 550 nm filter BGO w/ PMT 0.8 NIM 610 (2009) 488 2020 JINST 15 -40 0.6 P11005 0.4 -60 0.2 Cerenkov Scintillation 300 400 500 600 700 800 900 Scintillation (gate1 Wavelength [nm] -80 20 40 100 120 0 60 80

Time structure (waveform analysis)

Time (ns)

How to separate Cherenkov and Scintillation light

CalVision/MaxiCC - DR for e+e- colliders

Consortia of universities and labs

CalVision/MaxiCC - DR for e+e- colliders

Fermilab

Test Beams

Most Recent Results: Two 2024 test beams

Most Recent Results: Two 2024 test beams

Test Beam overview

Similarities between both

Crystal material and some filters! •

5

directional!

Angle scans

Ratio of Cherenkov to Scint will vary with angle -- if truly accepting Cherenkov!

Differences

- Beam characteristics
 - DESY v. CERN 0
- Crystal setup
 - size, shape, type Ο
 - readout particulars 0
- Filter-only v. waveform separation prioritization

DESY CalVision: Dual-end 4 SiPM Readout

- 2 GeV Electron Beam
- 4 Broadcom 6x6 mm SiPMs per end
- Prioritized configurability
 - tested many crystal/filter combinations
 - \circ ~ used same SiPMs for each

Motion stage

BGO

• 2.5 cm x 2.5 cm x 18 cm

• ~16 X₀

- "rear" channels: Hoya <u>U330</u> filter
- "front" unfiltered for scint-only

Fermilab

DSB Glass

- BaO+SiO₂+Ce₂O₃+Gd₂O₃
- 2 cm x 2 cm x 15 cm
 ~6 X₀
- "rear" channels: Hoya R64 filter

Average pulses @ 90°

w/R64 filter

+ch4

+ch7

t (ns)

• "front" unfiltered

30

20

a(t) (mV)

ABS Glass

- B_2O_2 +Si O_2 +Al $_2O_3$ +C e_2O_3 +G d_2O_3
- 2.5 cm x 2.5 cm x 6 cm

• unfiltered runs best!

Grace E. Cummings | 8th FCC Physics Workshop, 15 January 2025

500

BGO

• 2.5 cm x 2.5 cm x 18 cm

• ~16 X₀

- "rear" channels: Hoya <u>U330</u> filter
- "front" unfiltered for scint-only

Fermilab

DSB Glass

- BaO+SiO₂+Ce₂O₃+Gd₂O₃
- 2 cm x 2 cm x 15 cm
 ~6 X₀
- "rear" channels: Hoya <u>R64</u> filter

Average pulses @ 90°

w/<u>R64</u> filter

• "front" unfiltered

30

20

10

0

ABS Glass

- $\bullet \qquad \mathsf{B_2O_2} + \mathsf{SiO_2} + \mathsf{Al_2O_3} + \mathsf{Ce_2O_3} + \mathsf{Gd_2O_3} \\$
- 2.5 cm x 2.5 cm x 6 cm

ch4

ch7

1000

t (ns)

unfiltered runs best!

Grace E. Cummings | 8th FCC Physics Workshop, 15 January 2025

500

BGO

• 2.5 cm x 2.5 cm x 18 cm

• ~16 X₀

- "rear" channels: Hoya <u>U330</u> filter
- "front" unfiltered for scint-only

Fermilab

DSB Glass

- BaO+SiO₂+Ce₂O₃+Gd₂O₃
- 2 cm x 2 cm x 15 cm
 ~6 X₀
- "rear" channels: Hoya R64 filter
- "front" unfiltered

ABS Glass

- $\bullet \quad \mathsf{B_2O_2}\text{+}\mathsf{SiO_2}\text{+}\mathsf{Al_2O_3}\text{+}\mathsf{Ce_2O_3}\text{+}\mathsf{Gd_2O_3}$
- 2.5 cm x 2.5 cm x 6 cm

unfiltered runs best!

Fermilab

first time heavy glasses have been used in a beam 3 Results to showcase today test! Targets a homogenous HCAL BGO **DSB** Glass 2.5 cm x 2.5 cm x 18 cm BaO+SiO₂+Ce₂O₃+Gd₂O₃ • ~16 X₀ 2 cm x 2 cm x 15 cm "rear" channels: Hoya U330 filter $\sim 6 X_{0}$ 0 0 "front" unfiltered for scint-only "rear" channels: Hoya R64 filter "front" unfiltered 30 a(t) (mV) a(t) / a _{max} 90 deg. OV - 0.92 V. BGO, no filte ch4 ch7. 90 deg, OV = 4.42 V, BGO, U330 filte ch7, 90 deg, OV = 3,42 V, PbF2, no filter ch7 Average pulses @ 90° -50 20 w/R64 filter

10

Average pulses for "rear" (unfiltered) channels @ 90° -100 /oltage [mV] -150-200 -250channel 4 -300 hannel 200 400 600 1000 800 1000 t [ns] t (ns)

ABS Glass

- B₂O₂+SiO₂+Al₂O₃+Ce₂O₃+Gd₂O₃
- 2.5 cm x 2.5 cm x 6 cm

unfiltered runs best!

18

Fermilab

Grace E. Cummings | 8th FCC Physics Workshop, 15 January 2025

500

BGO (Bismuth Germanate)

- Electronics shaping poor \rightarrow need to differentiate pulse to see Cherenkov peak
 - 2 ns Single Delay Line technique

Fermilab

• Can then fit Cherenkov and Scintillation contributions

🛟 Fermilab

Light yield = (amplitude from fit * a_{max,MPV}) / (A1pe * E_{deposit,MPV})

DSB-3 (Barium Disilicate) Scintillating Glass

• Scintillating glass

DSB Properties: Ren-Yuan Zhu's CPAD2023 talk

• Some admixture of BaO+SiO₂+Ce₂O₃+Gd₂O₃

DSB-3 SDL analysis

Fermilab

Light yield = (amplitude from fit * a_{max,MPV}) / (A1pe * E_{deposit,MPV})

CERN MaxiCC Test beam setup 1

- Beams tested
 - mixed hadrons 120 GeV
 - electrons 10 GeV (E scan up to 100 GeV)
 - Muons 120 GeV
- PWO 1.3 cm x 1.3 cm x 15 cm
- 2 SiPMs on "rear"
 - small 3 mm x 3 mm for Scint (no filter)
 - \circ 6 mm x 6 mm for Cherenkov w/ filter
- Kodak thin film 8 and 24 filters
- SCEPCAL prototype run
 - 2 crystals -- segmentation
- straight light yield interpretation

Kodak-8: 490 nm K

Kodak-24: 590 nm long pass (< 1% scint transmission)

CERN MaxiCC Test beam setup 2

- Beams tested
 - electrons 10 GeV /20 GeV
 - Muons 120 GeV
- Multiple crystals/filters
 - 1.2 cm x 1.2 cm x 15 cm crystals
 - BGO w/ Schott UG11
 - BSO w/ Schott UG11
 - PWO w/ many different long-pass
 - CsI (Ti) w/ Schott UG11
- Dual ended HPK SiPM readout
 - "front" 3 mm x 3 mm for scintillation
 - "back" 6 mm x 6 mm for Cherenkov
- direct yield AND waveform analysis

Fermilab Grace E. Cummings | 8th FCC Physics Workshop, 15 January 2025

optical filter

Simulation

Test Beam setup simulation

- Extensive single-crystal development
 - PbF₂ modeling paper for Cherenkov acceptance
 - Position dependence in BGO
- Moving to crystal matrix + Dual Readout HCAL
 - segmented crystal front
 - different crystals
 - fiber or sandwich DR HCAL back
- In DD4HEP framework

Crystal ECAL!

Full Detector Simulation

- Fully differentiable crystal ECAL implemented in key4HEP
 - integrated into the IDEA detector concept
 - working on fleshing out DR capabilities
- Lots of reconstruction development
 - Particle Flow
 - ML photon energy regression

Summary and future plans

- Test beams promising!
 - DESY test beam comfortably surpasses goal of > 50
 Cherenkov photoelectrons / GeV
 - BGO
 - DSB glass for homogenous HCAL
 - CERN test beams pioneering segmentation and guiding SiPM choices for matrix prototype
- Matrix tests for full containment 2025 is the start!
 - CalVision building a BGO matrix with 4 SiPM readout
 - more granular front segment than rear
 - MaxiCC building a PWO matrix w/ improved SiPMs from test beam results
- Simulation maturing
 - crystal ECAL integrated into Key4HEP
 - Full DR test beam modules implemented in GEANT4

back-up

DESY Test beam campaign parameters

- Electron beam
 - most data taken @ 2 GeV (highest rate)
- ~60,000 events per measurement (w/ telescope)
 - ~3 minutes
 - ~400 Hz DAQ rate
- DRS-based readout
 - 1 GHz sampling (1000 ns)
- Angle Scans
- Integrated with Silicon telescope

Grace E. Cummings | 8th FCC Physics Workshop, 15 January 2025

Fermilab

DESY CalVision: Dual-end 4 SiPM Readout

• 2 GeV Electron Beam

Fermilab

- 4 Broadcom 6x6 mm SiPMs per end
- Prioritized configurability
 - tested many crystal/filter combinations
 - \circ ~ used same SiPMs for each

Grace E. Cummings | 8th FCC Physics Workshop, 15 January 2025

Motion

stage

SiPM card + first

amplification stage

Support structures

‡ Fermilab

 PbF_{2}

- directly measure Cherenkov acceptance and signal shape
- 36 $V_{bias} \rightarrow 3.5 V_{over}$

ch0	ch1	ch2	ch3	ch4	ch7
0.512	0.430	0.473	0.406	0.465	0.565

Table 3.1: Amplitude of 1 pe in mV at bias voltage of 36 V

$$Npe = A_{max}/A_{1pe}$$

The Single Delay Line (SDL) method - take a derivative

- 2 ns delay
- Cherenkov 1 PE shape from PbF₂

The Single Delay Line (SDL) method - take a derivative

• 1 pe scintillation shape \rightarrow convolute 1 pe Cherenkov w/ $y = \frac{1}{\tau} \exp\left(-\frac{t}{\tau}\right)$ \circ w/ τ = 314 ns \rightarrow decay time of BGO

• Build average SDL pulse at most probable amplitude for rear channels to extract photoelectrons per energy

 Build average SDL pulse at most probable amplitude for rear channels to extract photoelectrons per energy

• Build average SDL pulse at most probable amplitude for rear channels to extract photoelectrons per energy

Previous homogenous DR attempts

- Successfully separated Cherenov and Scintillation light!
 - wavelength
 - timing

0.3

0.2

0.1

300

Filter transmission

Previous homogenous DR attempts

- BGO and PWO matrices
 - instrumented w/ PMTs
 - targeted UV spectrum
- Not enough light for good resolution
 - scint spectrum killed w/ filters
 - not accepting enough cherenkov

N. Akchurin et al. (2012) Nucl. Instr. and Meth. A 686 (125)