8th FCC Physics Workshop

Measuring τ g-2 via $\gamma\gamma \rightarrow \tau\tau$ process at the FCC-ee

https://indico.cern.ch/event/1439509

PHYSICS

January 13-16, 2025 + Satellite workshop on Jan. 17

WORKSHOP

8th FCC

15 January 2025

D. d'Enterria, <u>M. Pitt</u>, M. Selvaggi (CERN)

- Lepton anomalous magnetic moments (g-2)
- Past studies
- Feasibility at the FCC-ee

Lepton anomalous magnetic moments (g-2)

 The photon – lepton vertex (scattering of lepton from an external electromagnetic field):

$$\Gamma^{\mu}(p',p) = \gamma^{\mu}F_{1}(q^{2}) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m_{\ell}}F_{2}(q^{2})$$

M. Peskin & D. Schroeder (Sec 6.2)

The photon – lepton vertex (scattering of lepton from an external

electromagnetic field): $F_2(0) = 1$ $\Gamma^{\mu}(p',p) = \gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m_{e}} F_2(q^2)$

M. Peskin & D. Schroeder (Sec 6.2)

• The photon – lepton vertex (scattering of lepton from an external

 $\bullet F_2(0) = \frac{g-2}{2} \equiv a_\ell$ electromagnetic field): $F_2(0) = 1$ $\Gamma^{\mu}(p',p) = \gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m_{e}} F_2(q^2)$ $\sum_{q}^{\prime} \sum_{q}^{\prime} \left\{ k' = \right\} \left\{ k' = 0 \right\} \left\{ k'$

M. Peskin & D. Schroeder (Sec 6.2)

• Corrections to photon-lepton coupling

$$a_{\ell}^{LO} = \frac{\alpha}{2\pi} \approx 0.0011613758$$

J. Schwinger Phys. Rev. 73 (1948) 416

• Corrections to photon-lepton coupling

$$a_{e} = a_{e}^{NnLO}(\text{QED}) + a_{e}(\text{Weak}) + a_{e}(\text{Hadron}) = \mathbf{1159652181} \cdot \mathbf{6(7)} \times \mathbf{10^{-12}}$$

$$a_{e}^{NnLO}(\text{QED}) = \frac{1}{2} \left(\frac{\alpha}{\pi}\right)^{2} + C_{2} \left(\frac{\alpha}{\pi}\right)^{2} + C_{3} \left(\frac{\alpha}{\pi}\right)^{3} + C_{4} \left(\frac{\alpha}{\pi}\right)^{4} + C_{5} \left(\frac{\alpha}{\pi}\right)^{5} + \dots$$

 For electrons, precision tests agrees up to 10 significant figures with the theory, which goes well beyond the LO term

Corrections to photon-lepton coupling

$$a_{\mu} = a_{\mu}(\text{QED}) + a_{\mu}(\text{EW}) + a_{\mu}(\text{HVP}) = \mathbf{11659201} \times \mathbf{10^{-10}}$$

- For electrons, precision tests agrees up to 10 significant figures with the theory, which goes well beyond the LO term
- $\circ~$ For muons, the measured precision ~ theoretical

15 January 2025

Corrections to photon-lepton coupling

$$a_{\tau} = a_{\tau}(\text{QED}) + a_{\tau}(\text{EW}) + a_{\tau}(\text{Hadron}) = \mathbf{117721}(5) \times \mathbf{10^{-8}}$$

- For electrons, precision tests agrees up to 10 significant figures with the theory, which goes well beyond the LO term
- For muons, the measured precision ~ theoretical
- For taus, the measurement of the a_{τ} is still a dream (M. Perl, 5th WEIN Symposium 1998)

Past studies

Tau lepton g-2 at LEP

• The measurement of the tau – photon coupling, $\Gamma^{\mu}(p',p) = \gamma^{\mu}F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m_{\ell}}F_2(q^2)$, and a constraint on a_{τ} was first performed at LEP

Tau lepton g-2 at LEP

• The measurement of the tau – photon coupling, $\Gamma^{\mu}(p',p) = \gamma^{\mu}F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m_{\ell}}F_2(q^2)$, and a constraint on a_{τ} was first performed at LEP

PLB 434 (1998) 169

L3: $\sqrt{s} = m_Z$ and $\mathcal{L} = 100 \ pb^{-1}$ Selection: $e^+e^- \rightarrow \tau^+\tau^-\gamma$

Tau lepton g-2 at LEP

• The measurement of the tau – photon coupling, $\Gamma^{\mu}(p',p) = \gamma^{\mu}F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m_{\ell}}F_2(q^2)$, and a constraint on a_{τ} was first performed at LEP

PLB 434 (1998) 169

L3:
$$\sqrt{s} = m_Z$$
 and $\mathcal{L} = 100 \ pb^{-1}$
Selection: $e^+e^- \rightarrow \tau^+\tau^-\gamma$

EPJC 35 (2004) 159

DELPHI: $\sqrt{s} \cong 200$ GeV and $\mathcal{L} = 650 \ pb^{-1}$ Selection: $\gamma \gamma \rightarrow \tau^+ \tau^-$

Tau lepton g-2 at LHC

• The measurement of the tau – photon coupling, $\Gamma^{\mu}(p',p) = \gamma^{\mu}F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m_{\ell}}F_2(q^2)$, and a constraint on a_{τ} was also performed at the LHC, first in PbPb UPC ($\gamma\gamma \rightarrow \tau\tau$)

PRL 131 (2023) 151802

ATLAS: $\sqrt{s_{NN}} = 5.02$ TeV and $\mathcal{L} = 1.44 \ nb^{-1}$ Selection: $\gamma \gamma \rightarrow \tau^+ \tau^-$

CMS-PAS-HIN-24-0011

CMS: $\sqrt{s_{NN}} = 5.02$ TeV and $\mathcal{L} = 1.7 nb^{-1}$ Selection: $\gamma \gamma \rightarrow \tau^+ \tau^-$

Tau lepton g-2 at LHC

• The measurement of the tau – photon coupling, $\Gamma^{\mu}(p',p) = \gamma^{\mu}F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m_{\ell}}F_2(q^2)$, and a constraint on a_{τ} was also performed at the LHC, in pp UPC ($\gamma\gamma \rightarrow \tau\tau$)

ROPP 87 (2027) 107801

Tau lepton g-2 at LHC

• The measurement of the tau – photon coupling, $\Gamma^{\mu}(p',p) = \gamma^{\mu}F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m_{\ell}}F_2(q^2)$, and a constraint on a_{τ} was also performed at the LHC, in pp UPC ($\gamma\gamma \rightarrow \tau\tau$)

ROPP 87 (2027) 107801

Feasibility at the FCC-ee

- Processes were generated with Madgraph5 and processed with Pythia + Delphes using the FCCee framework.
- Event generator: MG5_aMC v3.5.3
 - For the 4 nominal runs: $\sqrt{s} = 91.2 \text{ GeV}$, 160 GeV, 240 GeV, 365 GeV
 - Using full matrix element at LO (not the EPA photon flux)
 - Taus generated with $|\eta| < 3$
- Parton shower:
 - Pythia 8.311 with ISR + FSR
- Detector simulation:
 - Delphes with <u>card IDEA.tcl</u> and <u>edm4hep IDEA.tcl</u>

electromathetic

Tau lepton g-2 at FCC-ee

- Processes were generated with Madgraph5 and processed with Pythia + Delphes using the FCCee framework.
- BSM model using EFT model for $(g-2)_{\tau}$ extraction (approach valid only up to a_{τ}^{LO} term)

In the SM Lagrangian electromagnetic moments arise from:

$$\mathcal{L} \supset \frac{1}{2} \bar{\tau} \sigma^{\mu\nu} \left(a_{\tau} \frac{e}{2m_{\tau}} - id_{\tau} \gamma_5 \right) \tau_R F_{\mu\nu}$$

Deviation from the SM of a_{τ} can be parametrized in terms of dim-6 BSM Lagrangian:

$$\mathcal{L}_{\text{BSM}} = \frac{C_{\tau B}}{\Lambda^2} \overline{L}_L \sigma^{\mu\nu} \tau_R H B_{\mu\nu} + \frac{C_{\tau W}}{\Lambda^2} \overline{L}_L \sigma^{\mu\nu} \tau_R \sigma^i H W^i_{\mu\nu} + \text{h.c.},$$

(3)

- Electron / positron kinematics (GEN level)
 - Ideally, we need to tag very-forward $e+-(\theta \rightarrow 0)$ to select processes from the fusion of (quasi)real photons (sensitive to (g-2)_tau)
 - For increasing \sqrt{s} , less e+/- are centrally scattered

- Electron / positron kinematics (GEN level)
 - Ideally, we need to tag very-forward e+/- (θ→0) to select processes from the fusion of (quasi)real photons (sensitive to (g-2)_tau) Elastic scattering $\theta_{MAX} = \sqrt{\frac{-q_{min}^2}{r_m}}$
 - For increasing \sqrt{s} , less e+/- are centrally scattered

- Electron / positron kinematics (GEN level)
 - Ideally, we need to tag very-forward e+/- (θ→0) to select processes from the fusion of (quasi)real photons (sensitive to (g-2)_tau) Elastic scattering $\theta_{MAX} = \sqrt{\frac{-q_{min}^2}{r_m}}$
 - For increasing \sqrt{s} , less e+/- are centrally scattered

15 January 2025

- Electron / positron kinematics (GEN level)
 - Ideally, we need to tag very-forward e+/- (θ→0) to select processes from the fusion of (quasi)real photons (sensitive to (g-2)_tau) Elastic scattering $\theta_{MAX} = \sqrt{\frac{-q_{min}^2}{r_m}}$
 - For increasing \sqrt{s} , less e+/- are centrally scattered

electron $Q^2 < 1 \text{ GeV}^2$ ee→eeττ 91.2 GeV $ee \rightarrow ee + \tau \tau$ Normalized log₁₀(0/mrad) of electron لوقعا s = 365 GeV \rightarrow Tracker 1,225 = 240 GeV Lumica = 160 GeV √s = 91.2 GeV 10^{-2} \rightarrow Lumical s = 91.2 Ge \rightarrow Tracker- 10^{-3} 50<|θ_e|/mrad<100 $\theta_{a} < 50 \text{ mrad}$ 10 Quasi-real photons 10 Q²<1 ← 10 20 80 100 120 140 60 electron log₁₀(-Q²/GeV²) Scattered electron 0 [mrad] $\frac{1}{\log_{10}} \left(-\frac{1}{Q^2} / \text{GeV}^2 \right)^2$ of electron

- Event selection:
 - Exactly two tracks ($\tau \rightarrow \pi \nu + n\pi^0$ decays only for now) with p > 300 MeV

Cut efficiency

23.17%

- Event selection:
 - Exactly two tracks ($\tau \rightarrow \pi \nu + n\pi^0$ decays only for now) with p > 300 MeV
 - To suppress $ee \rightarrow \ell \ell$ choose $\Sigma E_{TRK} < 5 \text{ GeV}$

15 January 2025

Cut efficiency

23.17%

16.90%

- Event selection:
 - Exactly two tracks ($\tau \rightarrow \pi \nu + n\pi^0$ decays only for now) with p > 300 MeV
 - To suppress $ee \rightarrow \ell \ell$ choose $\Sigma E_{TRK} < 5 \text{ GeV}$
 - To enhance $ee \rightarrow ee + \tau\tau$ select acoplanarity A = $(1-\Delta\phi/\pi) > 0.5 \text{ deg}$

Cut efficiency

23.17%

16.90%

16.66%

- Event selection:
 - Exactly two tracks ($\tau \rightarrow \pi \nu + n\pi^0$ decays only for now) with p > 300 MeV
 - To suppress $ee \rightarrow \ell \ell$ choose $\Sigma E_{TRK} < 5 \text{ GeV}$
 - To enhance $ee \rightarrow ee + \tau\tau$ select acoplanarity A = $(1-\Delta\phi/\pi) > 0.5$ deg
 - Veto beam e+/- in "lumical+tracker" ($|\theta_e| > 50$ mrad at truth level)

Cut efficiency

23.17%

16.90%

16.66%

13.49%

- Energy dependence and g-2
 - BSM contributions are enhanced at high photon energies
 - Backgrounds are suppressed at high \sqrt{s}

- Energy dependence and g-2
 - BSM contributions are enhanced at high photon energies
 - Backgrounds are suppressed at high \sqrt{s}

M. Pitt @FCC Workshop

- \circ Tau polarization and g-2
 - In hadronic tau decays polarization variables can be used to discriminate dipole moment:

Modification of the strength of the magnetic moment will impact the spin correlations:

> More at high pT region (2.5% \rightarrow 10%)

Tau polarization	SM [pb]	BSM [pb]			
(+,+) or (-,-)	155.0	158.8			
(+,-) or (+,-)	175.4	179.3			
Apply high PT selection: Average τ pT > 10 GeV					
(+,+) or (-,-)	0.98	1.12			

\circ Tau polarization and g-2

For spin correlations, the polarization axis can be defined along the τ boost, from $\tau\tau$ boost frame ($\tau\tau$ CoM):

The decay angle with respect to the τ boost from $\tau\tau$ rest frame ($cos\theta$), can be expressed in terms of variables measured in $\tau\tau$ rest frame:

$$\cos\theta = \frac{E_{vis} - E_{v}}{P_{W}} = \frac{2E_{vis} - \gamma m_{\tau}}{\gamma\beta m_{\tau}}$$

The $\tau\tau$ rest frame can be reconstructed from outgoing electron/positron kinematics

- Electron / Positron tagging
 - Electron/Positron acceptance depends on the lepton transport and the location of the detectors (distance from the IP and distance from the beam center)

- Electron / Positron tagging
 - Electron/Positron acceptance depends on the lepton transport and the location of the detectors (distance from the IP and distance from the beam center)
 - \succ To reach few mrad we would need to install e+/- taggers inside the beampipe.

- Electron / Positron tagging
 - Electron/Positron acceptance depends on the lepton transport and the location of the detectors (distance from the IP and distance from the beam center)
 - > To reach few mrad we would need to install e+/- taggers inside the beampipe.
 - > The discussions with MDI is starting.

Conclusions

- Magnetic moment (g-2) of the tau lepton can be measured at the FCC-ee:
 - First exploratory studies indicate that one can measure the LO quantum correction (Schwinger term) with FCC-ee data at $\sqrt{s} = 90$ (and 365) GeV as it starts.
 - > Already with a few days of running, we can achieve the CMS upper limits of 3xSM.
- More precise determination of a_{τ} require e+/- tagging inside the beampipe
 - This would benefit all photon-photon BSM/SM studies (ALPs, Missing mass, dipole moment of quarks, light resonances and hadronic states)

Upcoming studies

- Change EFT-approach by a study that allows to derive the measurable a_{τ} value.
- Study the possible locations for e-/e+ taggers. Need also to understand electron transport through the FCC-ee magnetic lattice.

Parameter	Z	ww	н (ZH)	ttbar
beam energy [GeV]	45.6	80	120	182.5
beam current [mA]	1270	137	26.7	4.9
number bunches/beam	11200	1780	440	60
bunch intensity [10 ¹¹]	2.14	1.45	1.15	1.55
SR energy loss / turn [GeV]	0.0394	0.374	1.89	10.4
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.1/0	2.1/9.4
long. damping time [turns]	1158	215	64	18
horizontal beta* [m]	0.11	0.2	0.24	1.0
vertical beta* [mm]	0.7	1.0	1.0	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.71	1.59
vertical geom. emittance [pm]	1.9	2.2	1.4	1.6
vertical rms IP spot size [nm]	36	47	40	51
beam-beam parameter ξ _x / ξ _y	0.002/0.0973	0.013/0.128	0.010/0.088	0.073/0.134
rms bunch length with SR / BS [mm]	5.6 / <mark>15.5</mark>	3.5 / <mark>5.4</mark>	3.4 / <mark>4.7</mark>	1.8 / <mark>2.2</mark>
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	140	20	≥5.0	1.25
total integrated luminosity / IP / year [ab ⁻¹ /yr]	17	2.4	0.6	0.15
beam lifetime rad Bhabha + BS [min]	15	12	12	11
	4 years 5 x 10 ¹² Z LEP x 10 ⁵	2 years > 10 ⁸ WW LEP x 10 ⁴	3 years 2 x 10 ⁶ H	5 years 2 x 10 ⁶ tt pairs