

Constraining Anormal Quartic Gauge Couplings via $pp \rightarrow Z\gamma\gamma$ Process at FCC-hh

8th FCC PHYSICS WORKSHOP

January 13 -16, 2025, CERN

A. Senol¹, O.Karadeniz¹, K. Y. Oyulmaz¹ C.Helveci¹ <u>I. Turk Cakir² H. Denizli¹</u>

[1] Department of Physics, Bolu Abant Izzet Baysal University, 14280 Bolu, TÜRKİYE [2] Ankara University, Institute of Accelerator Technologies, 06830 Gölbaşı, Ankara, TÜRKİYE

ABSTRACT

We study on dimension-8 anomalous couplings related to the quartic vertices of neutral gauge bosons, defined by the effective field theory framework, in Zyy production with Z-boson decaying to charged leptons at Future Circular hadron-hadron collider (FCC-hh). The analysis is performed using Monte Carlo event sampling with a realistic detector effect and a cut-off-based method, taking into account centre-of-mass energy of 100 TeV and integrated luminosity parameters of 30 ab⁻¹ or the FCC-hh. The sensitivity limits for anomalous quartic couplings f_{T8}/Λ^4 and f_{T9}/Λ^4 $(f_{T0}/\Lambda^4, f_{T1}/\Lambda^4)$ and $f_{T2}/\Lambda^4)$ at 95% C.L. for FCC-hh with without systematic errors is two (one) order better than the current experimental limits of ATLAS and CMS results. Considering a realistic systematic uncertainty such as 10% from possible experimental sources, the sensitivity of all anomalous quartic couplings gets worsen by about 1.5% compared to those without systematic uncertainty for FCC-hh.

THEORY

$$c \qquad c \qquad \sum^{9} f_{T,i}$$

EVENT SELECTION AND DETAILS OF ANALYSIS

Cut-2	$p_T^{\gamma_1,\gamma_2}$	> 20 GeV	$ \eta^{\gamma_1,\gamma_2} \leq 2.5$	
-------	---------------------------	-----------	---------------------------------------	--

	$f_{T8}/\Lambda^4{=}0.01$ TeV $^{-4}$			FCC-hh			
Cut-0	339659 (336093)	316474	277688	104987000	255968000	162914000	1317040
Cut-1	135863 (132902)	125512	108020	29593500	66414700	52153500	280985
Cut-2	84834 (82976)	79066	793	0	24973	14963	0
Cut-3	19272 (17494)	16211	198	0	12486	0	0
Cut-4	18467 (16848)	15585	149	0	12486	0	0

Fig4. Normalized distributions of transverse momentum and pseudo-rapidity of the leading (y1)

Fig.7 Reconstructed mass of the leading and sub-leading charged leptons and photons after cut-5 without the UV bound (left panels) and with the UV bound (right panels) for FCC-hh with a L_{int} = 30 ab⁻¹

M., [GeV]

Fig.5 Normalized $\Delta R(\gamma 1, \gamma 2)$, $\Delta R(\gamma 1, 11)$, $\Delta R(11, 12)$ and charged lepton pair invariant mass distribution after the event selection (Cut-0) for the signals and backgrounds processes with Lint = 30 ab^{-1} .

295820Cut-5 5205(4010)-0-

Table 1: The cumulative number of events for signal $(f_{T8}/\Lambda^4 = 0.01 \text{ TeV}^{-4})$ and relevant background processes after applied cuts The number of events between the parenthesis are obtained after applying UV bounds for signals.

RESULTS AND DISCUSSION

The obtaining of the 95% Confidence Level (C.L.) limit on a one-dimensional aQGC parameter is performed by χ^2 test which corresponds to 3.84 integrating the invariant mass distribution of l⁺l⁻γγ system

NP is the total number of events in the existence of aQGC, NB is total number of events of the corresponding SM backgrounds in ith bin, ΔI is the combined (δsys) statistical systematic and uncertainties bin. in each

		FCC-hh		
	δ_{sys}	$Limits [TeV^{-4}]$	$\Lambda_{UV}[{\rm TeV}]$	
	0%	$[-1.29;1.05] \times 10^{-2}$		
f_{T0}/Λ^4	3%	$[-1.73;1.50] imes 10^{-2}$	3.6	
	5%	$[-2.11;1.87] \times 10^{-2}$		
	10%	$[-2.86;\!2.63]\!\times\!10^{-2}$		
	0%	$[-1.34;0.83] imes 10^{-2}$		
f_{T1}/Λ^4	3%	$[-1.75;1.23] imes 10^{-2}$	4.5	
	5%	$[-2.08;1.56] imes 10^{-2}$		
	10%	$[-2.76;2.24] imes 10^{-2}$		
	0%	$[-2.15;\!1.52]\!\times\!10^{-2}$		
f_{T2}/Λ^4	3%	$[-2.83;2.20] \times 10^{-2}$	4.3	
	5%	$[-3.40;2.78] \times 10^{-2}$		
	10%	$[-4.57;3.94] imes 10^{-2}$		
	0%	$[-1.16;0.54] \times 10^{-3}$		
f_{TS}/Λ^4	3%	$[-1.33;0.71] \times 10^{-3}$	17.2	
	5%	$[-1.50;0.89] \times 10^{-3}$		
	10%	$[-1.90;\!0.13]\!\times\!10^{-3}$		
	0%	$[-1.26;\!1.09]\!\times\!10^{-3}$		
f_{T9}/Λ^4	3%	$[-1.35;1.18] \times 10^{-3}$	17.7	
	5%	$[-1.48;1.31] \times 10^{-3}$		
	10%	$[-1.84;\!1.66]\!\times\!10^{-3}$		

Fig. 8 95% C.L. limits on anomalous quartic gauge couplings with and without the unitarity bounds (AUV) considering δ sys=0 of systematic errors with L_{int} = 30 ab⁻

 Table 2
 95% C.L. limits on anomalous quartic gauge couplings in units of
TeV⁻⁴ and the unitarity bounds (AUV) in units TeV considering δ sys=0, 3%, 5% and 10% of systematic errors with $L_{int} = 30 \text{ ab}^{-1}$

We have compared the current experimental limits with the results determined from this work, sensitivity on the couplings f_{T8}/Λ^4 and f_{T9}/Λ^4 (f_{T0}/Λ^4 , f_{T1}/Λ^4 and f_{T2}/Λ^4) for FCC-hh without systematic errors with Lint with L_{int} = 30 ab⁻¹ are two (one) order better than the current experimental limits obtained from different vector boson scattering process by ATLAS and CMS collaborations [7,8].

Comprable results related to HL-LHC $(\sqrt{s} = 14 \text{ TeV})$ and HE-LHC $(\sqrt{s} = 27)$ TeV) can be found in Ref[9].

REFERENCES

[1] O.J.P.Eboli, M.C.Gonzalez-Garciaand J.K.Mizukoshi, Phys.Rev.D 74,073005 (2006) [2] J. Alwall et al., JHEP 07 (2014), 079 [3] A.Alloul et al., Comput.Phys.Commun.185 (2014), 2250 [4] J. de Favereau et al. [DELPHES 3], JHEP 02 (2014), 057 [5] M. Cacciari, G. P. Salam and G. Soyez, Eur. Phys. J. C 72, 1896 (2012) [6] M. Cacciari, G. P. Salam and G. Soyez, JHEP 0804, 063 (2008)[7] G. Aad et al. [ATLAS], JHEP 06, 082 (2023) [8] A. Tumasyan et al. [CMS], Phys. Rev. D 104, 072001 (2021) [9] A. Senol et al., Nucl. Phys. B 980, 115851 (2022)

ACKNOWLEDGEMENTS

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK), Grand No: 120F055.