

SPS Main Power Converters Noise & Regulation

Joint Accelerator Performance 2024 Workshop

Charles Genton [SY-EPC-HPC]

10.12.2024

Content

1. SPS main power converters overview

2. SPS mains ripple and compensation measures

3. Regulation overshoots and possible mitigations

4. Current glitches and improved diagnostics

Content

1. SPS main power converters overview

2. SPS mains ripple and compensation measures

3. Regulation overshoots and possible mitigations

4. Current glitches and improved diagnostics

SPS main dipoles overview

- Ratings: 6 kA / 25 kV, < 20 ppm \succ
- 12 SMD stations in series + 2 spares \succ
- 1 common digital current regulator (FGC3) >
- Analogue voltage regulation and firing in each SMD \succ

SY

SMD power converter layout

Ratings: 6 kA / 2 kV

SMD regulation structure

SPS main quadrupoles overview

- Ratings: 2.2 kA / 4.0 kV, < 20 ppm</p>
- > 1 SMQ station **per circuit** (QF/QD) + 1 spare
- Digital current and voltage regulators (FGC3)
- > Analogue firing

SMQ power converter layout

Ratings: 2.2 kA / 3.6 kV

SMQ regulation structure

Content

1. SPS main power converters overview

2. SPS mains ripple and compensation measures

3. Regulation overshoots and possible mitigations

4. Current glitches and improved diagnostics

Thyristor Power Converter Noise (Part 1: Theory)

Thyristor Power Converter Noise (Part 2: Real life)

50 Hz

Origin of 50 Hz noise : typically comes from couplings with power circuits

– I MEAS QF

There is inherently a 50 Hz current circulating in the magnets because of couplings

100 Hz

Ideal AC network (balanced phases)

Real AC network (unbalanced phases)

100 Hz noise comes from the rectification of (naturally) unbalanced phases

How to eliminate theses ripples?

By compensating them!

Compensating BEAM noise VS. Compensating DCCT noise

Benefits of the compensation - Example

Intensity increased by 15-20% for LHC ion beams at injection

Confirmation in 2025

• Promising results (just before the YETS...)

- In 2025 Compensation also available in MBI (See https://indico.cern.ch/event/1447498/)
- Questions to answer :
 - Is it sufficient to compensate the noise on MBI, QF and QD?
 - Effective compensation on the beam still required?

Content

1. SPS main power converters overview

2. SPS mains ripple and compensation measures

3. Regulation overshoots and possible mitigations

4. Current glitches and improved diagnostics

Auto-tune overshoots – April 2024

Current response to a 170 mA auto-tune step (pink/green)

Issue fixed with 1st order filter on autotune step (red/blue)

Auto-tune overshoots – September 2024

Current response to a 170 mA filtered auto-tune step

not sufficient anymore with improved beams

Possible solutions:

- Use more sophisticated filtering
- Retune the current controller

Issue to be addressed during HWC 2025 in close cooperation with OP

Content

1. SPS main power converters overview

2. SPS mains ripple and compensation measures

3. Regulation overshoots and possible mitigations

4. Current glitches and improved diagnostics

Regulation glitches

SFTPRO Flat top

Automatic trigger of an oscilloscope **<u>not possible</u>** with such small perturbations

SY Accelerator Systems

Power Converters Noise and Regulation

Glitch detector

Solution: **software glitch detector** to collect data for better diagnostic

Roadmap for 2025

Thank you for your attention!

1. Power converters ripple

- a. Enable harmonics compensation in MBI thanks to SMD13 consolidation
- b. Make the harmonics compensation properties **ppm**

2. Regulation overshoots

Find the best solution with OP mitigate these overshoots

\rightarrow For re-tuning the current regulators, 5 extra half-days required

3. Regulation glitches

Understand and fix the glitches thanks to the glitch detector

Some final words:

- Very good cooperation with the SPS team, very interesting challenges to tackle
- Requires a lot of ressources from many persons in EPC!
- > What is the **priority** of these improvements at the scale of CERN projects?

home.cern

Additional measurement in QF

Oscillations during ramp-up

Oscillations during ramp-up – 2023 vs. 2024

