

Longitudinal Modelling and Operational Optimization Across the Complex

Birk Emil Karlsen-Bæck, S. Albright, T. Argyropoulos, R. Bruce, R. Calaga, J. Flowerdew, N. Gallou, L. Intelisano, I. Karpov, S. Kostoglou, A. Lasheen, M. Marchi, O. Naumenko, G. Papotti, J. A. Rodriguez, H. Timko, N. Triantafyllou, D. Valuch, M. Zampetakis

Joint Accelerators Performance Workshop, Montreux, Switzerland, 11th December 2024

Outline

- Modelling longitudinal control loops and their applications
 - Optimizations of equipment across the chain
- LHC power limitations at injection
 - Detuning and RF power transient optimization
- Longitudinal aspects of BCMS and standard beams
 - Evolution along the flat bottom in the LHC
- Outlook

Beam Dynamics Modelling and Equipment

Outline

- Modelling longitudinal control loops and their applications
 - Optimizations of equipment across the chain
- LHC power limitations at injection
 - Detuning and RF power transient optimization
- Longitudinal aspects of BCMS and standard beams
 - Evolution along the flat bottom in the LHC
- Outlook

Applications of Modelling Across the Chain

Accelerator	Scenario	What was modelled	Achievement
REX/HIE- ISOLDE	Various ion beams	Energy gain and time of flight via transit time factor from simulation	Faster rephasing of the cavities when switching beam types
PSB	Most operational beams	Multi-harmonic cavity controller	Understanding origin of slow instability
PS	Fixed target beam	Phase jump and beam control loops	Reduction of EAST losses and increase of TOF intensity
SPS	LHC-type beam	Beam control and cavity control	Accurate prediction of losses and beam parameters at flat bottom
SPS	Ion slip stacking	Voltage and frequency manipulation	Optimization tool used for the cycle
LHC	Proton beams	bunch length feedback	Improvement of regulation and a flat bunch length target
LHC	lon beams	Intra-beam scattering	Improved lifetime of the ion beam at capture

REX/HIE-ISOLDE – Cavity Rephasing for Different Beams

- Motivation
 - Linac accelerating around 25 different beam-types
 - Rephasing with beam was very time consuming
- What is being modelled?
 - Zero-order transit time factor behaviour
 - Time of fight between cavities

- Operational outcome
 - Model successfully applied and used systematically in 2024
 - Saving shifts dedicated to setup
 - Reduced downtime during physics campaign

Courtesy of J. A. Rodriguez

PSB – Most Operational Beams

Motivation

- Servo-loop-dependent slow instability
 - Could not be explained with current beam dynamics model
- What is being modelled?
 - Dynamic behaviour of the cavity controller
 - Intensity effects

2.5 Imperfect loop regulation at some of the • 0.0 synchrotron side bands

Next steps •

Outcome

- Explore different implementation of the loops in • tracking simulations
- Optimize settings of notch filters •

PS – Parasitic TOF with **EAST**

Motivation

25 15

20

15

10

5

CÉRN

Û

Legend PSBEAM/MOMENTUM

- Deliver beam to two destinations with one cycle
- Manipulation of TOF induces losses
 in EAST beam

PS – Parasitic TOF with EAST

- What is being modelled?
 - New implementation of PS beam control
 - PS impedance model
- Operational outcome
 - Optimization in simulation
 - EAST losses decreased from 7% to 1.5%
 - Contributed to doubling of TOF intensity
 - 3.5 x 10¹² p/b to 8.0 x 10¹² p/b

SPS – Capture of LHC-type LIU Beams

- Motivation
 - Help analyse and disentangle sources of beam losses at transfer
 - Coupling of beam and cavity control models in simulation
- What is being modelled?
 - Strong transient beam loading with LIU intensity
 - Complex dynamics during beam transfer
 - SPS impedance model

SPS – Capture of LHC-type LIU Beams

- Outcome
 - Benchmarked simulation model against measured beam parameters and beam losses
- Next steps
 - Apply the full model for PS-SPS transfer studies

Simulated and measured 200 MHz bunch phases after filamentation

CERN

SPS – Slip Stacking with Ions

• Motivation

- Complex RF manipulation to merge ion batches
- Complicated orchestration of timings and functions

Simulation of slip stacking of two ion bunch trains in the SPS

Courtesy of D. Quartullo

- What was modelled?
 - Two groups of cavities with different voltage and frequency programs
 - Beam phase and radial loop
 - SPS impedance model

SPS – Slip Stacking with Ions

- Operational outcome
 - Voltage and frequency programs worked as predicted in simulation
 - Simulations/calculations integrated in operational expert application for use in the CCC
 - Importance of 800 MHz system for beam stability
 - Usual optimization required for the rest of the cycle

LHC - Blow-up Optimization in the Ramp

- Motivation
 - Heating issue due to short bunches
 - Avoid over and under shoots of the bunch length with better regulation
- What was modelled?
 - Bunch length feedback used to regulate the noise amplitude during the ramp

 $x_{n+1} = ax_n + g(\tau_{targ} - \tau_{meas})$

- LHC impedance model
- Operational outcome (see talk by A. Calia)
 - Significantly improved regulation of the bunch length
 - Better set of feedback parameters
 - Flat bunch length target is now being used during the ramp

Saving to /eos/user/r/rfacsop/Operation/2024-BUP-Analysis/plots/blowup_fills10000-10059.png

LHC – RF Optimization of Lifetime with lons

- Motivation
 - Significant beam losses at the start of the ramp with 8 MV
- What is being simulated?
 - Predicted using 3D intra-beam scattering (IBS) tracking model with non-Gaussian bunches
 - Confirmed also with 1D IBS model assuming Gaussian bunches
- Operational outcome
 - Reduction of start-of-ramp losses
 with ions
 - Improvement of beam lifetime with higher RF voltage

B. E. Karlsen-Bæck | Longitudinal Modelling and Operational Optimization Across the Complex

11 December 2024

Outline

- Modelling longitudinal control loops and their applications
 - Optimizations of equipment across the chain
- LHC power limitations at injection
 - Detuning and RF power transient optimization
- Longitudinal aspects of BCMS and standard beams
 - Evolution along the flat bottom in the LHC
- Outlook

Model of half-detuning and cavity tuning in BLonD

- Motivation
 - Minimize RF power at injection and during flatbottom
- What is being modelled?
 - Beam dynamics at injection including intensity effects
 - Regulation of beam and cavity control loops
 - Detuning of the RF cavities and the tuner controller

Optimization of Half-detuning in the LHC

Half-detuning scheme

- Set up during commissioning with beam
- Set up during high-intensity MDs
- In the past
 - Manually line-by-line
- Algorithm to optimize half-detuning scheme
 - Based on simulation model using of LHC cavity controller
 - Faster and more precise setting up of the scheme

Algorithm applied on simulated data. Detected beam segment in red and no-beam segment in blue.

Algorithm applied to optimize a real LHC RF cavity. Detected beam segment in red and no-beam segment in blue.

LHC Pre-detuning Optimization

Last year

- Preliminary scan in pre-detuning scan was done
- Simulations predicted a minimum in power
 - Greater understanding of the scheme
- In 2024
 - Operationally 25 deg. was used
 - Large operational scan in pre-detuning
 - Systematic difference between beams
 - Possibly due to difference in bunch length
 - Minimum found experimentally and validates the simulation model

Measured optimum pre-detuning setting from operational scan in 2024

Most recent projections for HL-LHC

- Measured power has a large spread (±20%)
 - Use cavity controller model to compute RF power
- Results from high-intensity MDs in 2024
 - With 2.0 x 10¹¹ p/b with 2x48b batches
 - Confirmed required voltage found in 2023 (with 72b trains) for HL-LHC
 - Power at the limit of the present system
 - With 2.3 x 10¹¹ p/b with 2x48b batches
 - Maximum voltage achieved during MD was 6.5 MV without one-turn delay feedback due to high beam loading as predicted in simulations

Unacceptable lifetime due to lack of RF power

Measured and simulated RF power with BCMS beams this year

Year	Intensity	SPS bunch length	SPS Voltage 200 MHz	SPS Voltage 800 MHz	LHC Voltage	LHC bunch length	Simulated peak power at optimum <i>Q_L</i>
2023	2.0 x 10 ¹¹ p/b	1.55 ns	9.4 MV	1.69 MV	7 MV	1.20 ns	263 kW
2024	2.0 x 10 ¹¹ p/b	1.50 ns	8.5 MV	1.45 MV	7 MV	1.11 ns	269 kW
2024	2.3 x 10 ¹¹ p/b	1.60 ns	8.5 MV	1.53 MV	6.5 MV	1.19 ns	238 kW (with OTFB 283 kW)
HL-LHC	2.3 x 10 ¹¹ p/b	1.65 ns	10 MV	2 MV	7.9 MV	1.25 ns	(320 ± 15) kW

Outline

- Modelling longitudinal control loops and their applications
 - Optimizations of equipment across the chain
- LHC power limitations at injection
 - Detuning and RF power transient optimization
- Longitudinal aspects of BCMS and standard beams
 - Evolution along the flat bottom in the LHC
- Outlook

Bunch Length during Flat Bottom in the LHC

- **Batch Compression Merging Splitting (BCMS)** •
 - More complex RF manipulation in the PS •
 - Generation of more satellites at LHC flat top •
 - Higher brightness than the standard beam •
 - Identical longitudinally at injection in the LHC •

Relative difference in average bunch parameters with BCMS compared with standard 25ns beam after filamentation. see talk by S. Kostoglou

Beam	Bunch length	Bunch intensity	Horizontal emittance	Vertical emittance
Beam 1	-4%	2%	-24%	-20%
Beam 2	-2%	2%	-25%	-23%

Increase in satellites at flat top with BCMS

11 December 2024

1.025 ns, Beam 1 BCMS. Beam 1 ns, Beam 2 BCMS. Beam 2 9600 9800 10000 10200 Fill number

Longitudinal emittance from injectors is the same

1%-limit for experiments

BCMS and Standard Beam at the Start of the Ramp

- Large increase in start-of-ramp losses when switching to BCMS
 - Increase RF voltage from 5 MV to 5.5 MV
- Yet at the start of the ramp
 - The BCMS beam is longer, even with larger voltage
 - More protons lost out of the bucket

Off-position Beam Analysis

- Off-position beam
 - Combination of DC BCT and FBCT measurements
- Analysis for this year
 - More off-position beam is off-momentum this year
 - Losses driven by uncaptured beam, IBS and RF background noise
- Conclusion:
 - More losses driven by IBS due to higher brightness with BCMS
 - supported by preliminary IBS simulations (20% increase in losses after 20 minutes)
 - Based on 2024 we need 10% more voltage with BCMS

CERN

B. E. Karlsen-Bæck | Longitudinal Modelling and Operational Optimization Across the Complex

Summary of Key Points

Complex models of RF systems with high prediction accuracy

- Applied to large verity of scenarios across the complex
- Simulations give experience which be applied in operation
- Use beam dynamics models already at the design stage of control loops to give specifications for parameters?

• LHC MD with 2.3 x 10¹¹ p/b confirmed the projections for HL-LHC RF power demand

- Implement OP tools for pre-detuning and half-detuning
- By how much will BLM thresholds be increased and how will this affect us? See talk by S. Morales
- How does the bandwidth of the high-efficiency klystrons affect the projections?
- Due to the higher brightness, the BCMS beam is harder to retain with the RF system at flat bottom
 - Retain BCMS for HL-LHC? See also talk by S. Kostoglou
 - Will be addressed in discussion session

home.cern

PS – Parasitic TOF with EAST

BLonD Simulations: Use new H8H16 beam feedback control model, PS Impedance Model

CERN

Model of half-detuning and cavity tuning in BLonD

Antenna voltage for a superconducting standing-wave RF cavity (slot-by-slot)

$$V_{a}^{(n)} = {\binom{R}{Q}} \omega_{rf} T_{s} I_{g}^{(n-1)} + \left(1 - \frac{\omega_{rf} T_{s}}{2Q_{L}} + i\Delta\omega T_{s}\right) V_{a}^{(n-1)} - \frac{1}{2} {\binom{R}{Q}} \omega_{rf} T_{s} I_{b}^{(n-1)}$$
ELERF controls and amplifier
RF cavity
Beam

Cavity tuner feedback for half-detuning (turn-by-turn)

ÉRN

BCMS and Standard Beams in Simulations

From simulation

- After 20 minutes: •
 - BCMS and STD have the same length •
 - BCMS has 20% more losses than STD •
- Higher brightness give longer bunches and more ۲ debunched beam
- **NB! BLonD model assumes gaussian** ulletbunches

Power Limitations at Injection into the LHC

SPS beam distributions

Measured and simulated bunch phase of the 72bunch BCMS train in 2024

Injection transients

Example simulated injection transient in the LHC Steady-state power and cavity tuning

Example steady-state RF power slot-by-slot in the LHC

Ghosts and Satellites at the Flattop in the LHC

26 May 2024 12:24:06

- BSRL show a clear step when switching beam types
- In the PS the extra merging generate tails
 which one cannot get rid off

Lifetime at injection for different RF voltages

