Fixed Target Beams & Challenges for the Future Beam dynamics modelling $\leftarrow \rightarrow$ Operation

P. Arrutia

with contributions from S. Albright, M. Algelly, C. Antuono, F. Asvesta, D. Banerjee, M. Calviani, H. Damerau, G. P. Di Giovanni, Y. Dutheil, L. Dyks, M. Fraser, A. Gorn, A. Huschauer, L. Le, B. Mikulec, T. Prebibaj, S. Rothe, F. Velotti, Q. Vuillemin

JAPW 2024 (15' + 10')

11/12/2024

Introduction

Fixed target destinations are the largest "particle and cycle consumers" across the complex.

- Demand expected to increase post LS3, with SHiP entering the North Area.
- Requests to extend ion runs (incl. proton+ion parallel operation) must also be considered within this landscape.
- Efforts split across different projects and working groups: IPP, SLAWG, bSAC, SOX, CONS, Future Ions, Hi-ECN3...

Challenge for the future: make the particle-pie bigger and/or share it more effectively.

[1] T. Prebibaj

JAPW 2024 FT Beams and Challenges for the Future P. Arrutia

(*) indicative only

<u>*Underlined references</u> <u>typically contain hyperlink</u>

High(er) intensity

Successful ISOLDE operation, with better transmission w.r.t. 2023 (e.g. improved octupole resonance correction) [1]. High intensity MDs:

- Up to 5e13 protons per pulse both to HRS and GPS (nominal 3.2e13).
- Exploration of maximising transmission and minimising emittance w.r.t. Intensity.

Remaining: emittance limits due to extraction apertures, exploration of limitations for 2 GeV (impedance/instabilities & RF).

[1] F. Asvesta, <u>PSB MPC 2024</u>

[2] F. Asvesta, G.P. Di Giovanni, 2024

[3] T. Pebibaj, <u>IEFC 2024</u>

JAPW 2024 FT Beams and Challenges for the Future P. Arrutia 1.02

1.00

0.98

0.96

0.94

0.92

0.90

year 2023 2024

ISOLDE

transmission

Facility upgrade

Aiming to have multi-energy/target/intensity operation -> with great flexibility comes...

- Ongoing: Auto-optimisation of BTY steerers and final focus (using yield and/or RP monitors) [1].
- Ongoing: optics models for low-energy lines -> migrate to LSA paradigm (planned LS3) [2].
- Ongoing: design limit for ISOLDE Beam Dump Replacement need to be finalised.
- Post LS3: HRS/GPS parallel operation (software and/or hardware upgrades needed) [3].

[1] S. Rothe, IPP 2024

[2] Q. Vuillemin, ITC 2024

[3] L. Le, S. Rothe

JAPW 2024 FT Beams and Challenges for the Future P. Arrutia Opti

BTY.ODE321

BTY.OF0322 BTY.DHZ323

BTY.BCT325

HRS.BSFHNO.

F. Asvesta, PSB MPC 2024
 C. Antuono, <u>IPP MD 2023</u>

JAPW 2024 FT Beams and Challenges for the Future P. Arrutia

Successfully operated @ 2GeV with better transmission w.r.t. 2023 [1].

- Identified cause of instability found @1.6 GeV -> unmatched kicker impedance.
- Found new Qx working point, pushing instability threshold beyond 2 GeV.

High-flux TOF @ PS

High-flux run Aug-Sep 2024, pushing the limits for all TOF cycles [1].

- Running close to target limit (2.2e12 p+/s -> 1.9e17 p+/day).
- Double-TOF as option to sustain high-flux during supercycles with high demand from ISOLDE -> interlocks being discussed to avoid extracting both bunches together.

[1] A. Huschauer, Y. Dutheil, <u>IPP 2024</u>

JAPW 2024 <u>FT Beams and Challenges for the Future</u> P. Arrutia

High-flux TOF @ PS: Losses

Transmission and norm. losses kept under control. Ongoing:

- Interlock update to use brightness instead of beam size just upstream of target (remains a software interlock*).
- Assessment of required RP cooldown time in case of equipment failure requiring intervention in FTN.

[1] A. Huschauer, Y. Dutheil, <u>IPP 2024</u>

JAPW 2024 <u>FT Beams and Challenges for the Future</u> P. Arrutia

*The interlock prevents sending the NEXT SHOT to the target.

PSB Ring sharing

Idea since 2000s to provide nTOF and ISOLDE beams within same PSB cycle using ring-by-ring destinations [2].

Option 1, "slow" switching:

- Hardware required: BT.BHZ10 power converter for polarity switch (? CHF), BE3.SMH15 separate tank (100kCHF) and converter (100kCHF).
- Condition: ISOLDE 1.4GeV* AND TOF + ISOLDE in SCycle AND not double-TOF

*Due to mains RMS current limit

Option 2, "fast" switching:

- Hardware required: kicker, 2 septa replacing BHZ deflecting into 2 independent dipoles (one to BTM, one to BTP) -> 2.5 MCHF in 2000
- Condition: TOF + ISOLDE in SCycle AND not double-TOF

Switching magnet

Kicker

Septum

[1] S. Albright, <u>IPP 2024</u> [2] C. Carli, PPC 2000 JAPW 2024 FT Beams and Challenges for the Future P. Arrutia

1

Post-LS3, the SPS will aim to provide **4e19 p/year to SHiP in the HI-ECN3 facility, in addition to 1e19 p/year to T2+T4+T6** (comparable to 2023, 2024).

- Baseline: 4.2e13 p/spill slow extracted for both SHIP (not shared in TT20) and SFTPRO (shared in TT20) [1].
- bSAC and SOX efforts developing "super-cycle models" to further optimise situation -> MDs requested pre-LS3 for super-cycle composition.

SFTPRO: 9.6 s flattop (4.8 s flattop also possible: worse for other PS/PSB users) SHIP: 1.2 s flattop

deGauss: required to stay within NA RMS current limit (more constraining than SPS mains)

[1] T. Prebibaj, IPP 2024

JAPW 2024 <u>FT Beams and Challenges for the Future</u> P. Arrutia

High intensity

To run at 4.2e13 p/spill and 5e19 PoT/year, extensive studies and upgrades performed and under way [1, 2].

- **@PSB:** experience delivering intensities well beyond SHiP -> working on smaller V-emittance.
- **@PS:** running reliably with barrier bucket, demonstrating extractions at/beyond SHiP intensity.
- @PS-to-SPS, ongoing: beam loss between PS extraction and SPS flat-bottom.
- @SPS, ongoing: systematic understanding of intensity-dependent tune shift.
- **@SPS sloex, ongoing:** systematic understanding of spill quality and losses at high-intensity (not easy to study since it requires extraction all the way to the targets).

[1] M. Fraser, <u>IPAC 2024</u>
[2] T. Prebibaj, <u>IPP 2024</u>

JAPW 2024 FT Beams and Challenges for the Future P. Arrutia

*Additionally, transmission was rather low across the complex.

(Even) High(er) intensity

Moving **beyond 4.2e13 p/spill would provide a means to provide more PoT/year or reduce the number of spills***. In addition to limitations in previous slide [2]...

- @SPS: SPS internal dump (TIDVG#5) limit at 7e13 p/spill (while respecting also average power limits).
- @NA, ongoing: power limits for NA interceptive devices. SHIP: BDF target. SFTPRO: TCSC, TAX, T2/T4/T6 targets.
- @PS, ongoing: beam-loading compensation of Finemet to avoid barrier bucket distortion.

Figure 1: Intensity per cycle achieved in the SPS.

	CNGS	RECORD	CN2PY
E _{SPS} [GeV]	400	400	400
Bunch spacing [ns]	5	5	5
$I_{\text{bunch}} [\times 10^{10}]$	1.05	1.3	1.7
N _{bunches}	4200	4200	4200
$I_{\rm SPS} [\times 10^{13}]$	4.4	5.3	7.0
$I_{\rm PS} [\times 10^{13}]$	2.3	3.0	4.0
PS cycle length [s]	1.2	1.2	1.2/2.4
SPS cycle length [s]	6.0	6.0	6.0/7.2
E _{PS} [GeV/c]	14	14	14
Beam power [kW]	470	565	747/622

CN2PY aiming at 7e13 p/pulse FAST EXTRACTED (CDR)

[1]

[1] T. Prebibaj, <u>PBC 2023</u> [2] <u>BDF/SHiP,</u> 2023 JAPW 2024 <u>FT Beams and Challenges for the Future</u> P. Arrutia *SHiP searches extremely rare processes and is thus not rate limited. The same is NOT true for other users.

Extraction losses

Goal to keep dose to LSS2 unchanged, even when POT will be increased by 4x.

- Crystal shadowing of ZS: DECRYCE project advancing to build optimised single crystals and multi-volume array (possibly pre-LS3) [1].
- MD: bump, septa, octupole-folding optimisation -> 20% loss reduction [2].
- Building Al ZS tank (-40% activation w.r.t. stainless steel), after extensive R&D [3,4].

FEA Ansys model (iteration with 4 stiffeners)

[1] F. Velotti, L. Esposito, <u>SLAWG 2024</u>

JAPW 2024 <u>FT Beams and Challenges for the Future</u> P. Arrutia [3] <u>F. Pirozzi</u> SLAWG 2023 [4] <u>H. Vincke</u> SLAWG 2023

TT20 optics

Identified errors in I-to-B transfer functions for QTN, QTL (4%), QTA (1%). Deployment planned in 2025 commissioning (LHC B1 and HiRadMat lines also contain QTL).

- Significantly improved agreement between model and measurements [1,2].
- MD/Commissioning 2025: correct vertical beam size at splitters using optics, instead of requesting large V-emittance from PSB (would improve transmission, especially at SPS inj.).

[1] F. Velotti, SPS MPC 2024

[2] L. Dyks, 2024 [3] Y. Dutheil, 2023 JAPW 2024 FT Beams and Challenges for the Future P. Arrutia

Input from users

To ensure efficient operation and R&D, **tight collaboration with users is crucial. Spill Optimisation** for eXperiments (SOX) effort ongoing [1]:

- Collected requirements & limitations from NA62, SHiP, AMBER, MUonE and NA64 -> direct input for beam sharing scenarios, report being written.
- Developing online analysis pipeline to profit from user-relevant KPIs -> minimal example to be tested before LS3.

JAPW 2024 <u>FT Beams and Challenges for the Future</u> P. Arrutia

Conclusion

- Exciting fixed-target beams program ahead, pushing new limits for intensity and beam quality.
- Challenges spread across all machines & FT beam types.
- R&D opportunities over all aspects: beam dynamics, operations, equipment, automation & controls.
- Need to combine input from this presentation with input from users to prioritize amongst different options.

"Second quarter is up. No, fourth quarter. Now second again. OK, it's third now..."

Extra slides

- Prospect of running ISOLDE with higher intensity per shot in 2025 in view of future proton sharing, and status of upgrade project
- Higher intensity for TOF
- Fixed-target beams: bunch length/momentum spread/beam size (PSB, PS), spill quality (PS/SPS), losses
- Higher intensity requests for North-Area post-LS3 + Beamline acceptance.
- Beam for BDF/SHiP and intensity increase to 7e13, future beam sharing (different scenarios for proton sharing in the SHiP-BDF time) MDs related and proposed tests before LS3.
- Where do we stand concerning losses and activation for high intensity beams?
- Check BPT: <u>https://bpt.web.cern.ch</u>

CodiMD: https://codimd.web.cern.ch/2DjIMqkCQ3uI1X-RiXJkKw?both#

double-TOF @ PS

Not the cycle CERN deserves, but the one it needs right now?

sure

Cycle ready & nTOF DAQ modified to take both bunches. Ongo bunches are not extracted together*. Collecting failure modes:

- (i) all twelve KFA71-79 dump switches fail to trigger.
 - Preliminary analysis of 10 million shots indicates this is highly unlikely to happen.
 - Trim range can be limited and protected by MSC settings (standard across other • kickers at CERN). 99.96130%

100

(ii) bunches spaced too closely from PSB.

[1] A. Huschauer, Y. Dutheil, IPP 2024

[2] M. Algelly, 2024

JAPW 2024 FT Beams and Challenges for the Future P. Arrutia

*SY-STI: Target limit 1e13 ppp. 10-20% excess may be tolerated for a single shot. Needs further study.

TT20-P42 Optics Measurements

L. Dyks

- Beam to HI-ECN3 will use dedicated optics
 - Beam is not split
 - Optics changed cycle to cycle
- Beam loss prompted optics studies in TT20-P42 [JAPW23]
 - Implied error source \rightarrow QNL/QTL settings in TT20.
 - P42 was already using the new QNL transfer function.
 - Further studies showed QTA as 2nd leading source of error.
- Big effort under NACONS to measure the transfer functions of various magnets.
 - Measurements showed ~4% error in TF for QNL/QTL and ~1-2% error in TF for QTA.
- MDs done using measured magnet TFs for the TT20 magnets.
- Optics substantially closer to design

Example quadrupole scans: New Vs old TFs Measuring beam size as a function of magnet

current

CERN

Beam size vs. yield

- Better focus with higher energy - as expected

- -> MD

New septum materials

Hazards related to residual dose can be tackled by looking for viable **low-Z** materials for different septum components.

Table 6: Radiological beneficial component material exchanges for extraction equipment.

Element	Component	Current material	Beneficial material	Dose rate reduction factor
ZS	Anode wires	Rhenium/ Tungsten	Titanium or Graphite	0.2-0.6 integrated reduction after 30 hours. 0.1-0.001 anode contribution at 1 metre distance (Figs. 72 and 74)
ZS	Anode support	Stainless steel or Invar	Titanium	0.25- 0.33 after 1 week, 1 metre distance (Fig. 73)
ZS	Vacuum tank	Stainless steel	AL6061	0.6 after 1 week, 1 metre distance (Fig. 75)

Slow-Extraction R&D at CERN P. Arrutia June 28th 2024

In-house crystals

DECRYCE (DEvelopment of CRYstals for Collimation and Beam Extraction) project established **for CERN's crystal needs [1]**: LHC collimation, septum shadowing...

- Procurement of crystal wafers
- Cutting and polishing
- Bender system and integration
- Validation with X-ray and particle beams
 <u>Multi-volume reflection</u>

<u>| G. Daher, L. Esposito 2024</u> | F. Velotti 2024 Slow-Extraction R&D at CERN P. Arrutia June 28th 2024

Crystal shadowing (ii)

Two regimes can be exploited for bending:

Channelling: large kick, low efficiency

SPS crystal

Spa review: great dry sauna, humid sauna does not get hot enough