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Motivation

= Main indicators of beam quality:
» Emittance: avoiding emittance growth
» Intensity: minimizing losses & preventing beam dumps
» Tall population: preserving tails & avoiding tail increase
from the injectors to the LHC.
= Degradation starts already in the injectors and continues throughout the LHC.

= Goalisto:
 |dentify where the degradation occurs.
« Understand the cause.
« Evaluate the impact on LHC performance & define priorities.
* Provide recommendations to optimize performance for next year & next runs.
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Overview

--------------------------------------------------------------------------------------------------------------------------

EI. Beam quality in the injectors: .
: 1. Emittance growth PSB-> PS - SPS, standard vs BCMS beams
2. Tall population from PSB—-> PS - SPS & “low-tail” BCMS.
3. Losses from PS - SPS.

. *
-------------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------
L4
~
L4
*

---------------------------------------------------------------------------------------------
* *

Impact on integrated luminosity::

Tall population SPS-> LHC & transfer line mismatch.
= BCMS vs standard: model vs measurements

Injection losses: 2024 vs 2023.
Emittance with standard & BCMS beams.
Emittance growth at injection beyond IBS & tail evolution.

= Reduction of losses with ’low-tail” BCMS.

Injection

= |mpact of emittance growth beyond IBS.

. .
---------------------------------------------------------------------------------------------

15. Debunched beam at injection & losses at the start of ramp.

---------------------------------------------------------------------------------------

Ramp

v6. Power supply ripple at the end of ramp.
7. Losses at the end of adjust & correlation with tails. L e T T LS
8. Losses during leveling & DA. :

9. -Lesses-beyond-bumn-off-due-to-collisionsih-1RS:
10. Emittance growth during collisions.

*
* .
....
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Overview
I Beam quality in the injectors: .
: 1. Emittance growth PSB-> PS - SPS, standard vs BCMS beams
2. Tall population from PSB—-> PS - SPS & “low-tail” BCMS.

3. Losses from PS - SPS.

. *
-------------------------------------------------------------------------------------------------------------------------




Emittance evolution in the injectors
= Emittance measurements at PSB-> PS = SPS:
« Emittance blowup along the chain:
« ~5% PSB extraction—> PS extraction
« ~15-20% PS extraction - SPS after scraping:

|. PS extraction = SPS injection: emittance growth & tail population, trends similar to
observation from SPS - LHC transfer line mismatch, under investigation.

II. SPS flat bottom: improved with tune optimizations IPP_I. Mases Sole.
« Standard vs BCMS: ~25% reduction in emittance with BCMS at SPS after scraping.
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https://indico.cern.ch/event/1470711/contributions/6191634/subcontributions/513237/attachments/2963490/5212974/2024_11_08_IPP_2024_LIU_beams.pdf

Tail evolution & losses In the injectors

- Systematic q-factor increas_e (~5_15%) PS 1.7 — F. Asvesta, M. Bozatzis, |I. Mases Sole [
extraction = SPS after scraping. 16 | mm sPs Reduction also seen
: e : : : : 15 1.4 at LHC injection
= Significant improvements in tail population 1.39
during 2024: N
o 13
15t ”low-tail” BCMS variant: B
= Introduction of PSB scraping, achieving g=1 at extraction. 1.1
= Significant tail increase during PS y,, ., transition crossing 0
related to space charge: improved with PS tune 0.9
optimizations |PP M. Bozatzis. 08
= No clear tail improvement at LHC injection. " T gems P e
2" ”low-tail” BCMS variant: Standard|!  Nominal Bc;sm = -SIOWMS' -Fa"“msLow_ta”BCMS
= Source of improvement not fully understood, traced back . .
(0 PS. 13558
= C(Clear tail reduction at LHC injection. - M
= ~5% losses in SPS before scraping: ) lii\ L)
o _ . i |
* Injection losses, slow losses, losses during ramp. i Hii “Hﬂlmﬁii }
. Improvement with “low-tail” BCMS. 2 N
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https://indico.cern.ch/event/1429489/contributions/6013379/attachments/2891264/5068134/IPP_PS_Sim_Opt.pdf

Tail evolution & losses In the injectors

= Systematic g-factor increase (~5-15%) PS = PS—
extraction = SPS after scraping. 16 | mm sPs Reduction also seen
15 at LHC injection
= Significant improvements in tail population 1.39
during 2024 | <@ L 7

Follow-up

Further tail & emittance improvements from PS extraction = SPS extraction.

Try to understand origin of tail reduction in the PS on the 10" of September.
Need for online analysis of SPS losses & automatic profile measurements to
monitor quality of injected LHC profiles & detect changes fast and efficiently.

= Source of improvement not fully understood, traced back
to PS. |

= C(Clear tail reduction at LHC injection.

= ~50% losses in SPS before scraping:

* Injection losses, slow losses, losses during ramp.

* Improvement with “low-tail” BCMS.
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https://indico.cern.ch/event/1429489/contributions/6013379/attachments/2891264/5068134/IPP_PS_Sim_Opt.pdf

Overview

-------------------------------------------------------------------------------------------
L4
~
L4
*

Tall population SPS-> LHC & transfer line mismatch.
Injection losses: 2024 vs 2023.

Emittance with standard & BCMS beams.

Emittance growth at injection beyond IBS & tail evolution.

Debunched beam at injection & losses at the start of ramp.g
Power supply ripple at the end of ramp. :
7. Losses at the end of adjust & correlation with tails.
8. Losses during leveling & DA.

9. -Lesses-beyond-bun-off-due-to-collisionsip-1RS8:
10. Emittance growth during collisions.

*
* .
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SPS extraction to LHC injection
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Injection losses

In 2023:
= High and fast losses during B1 injection: BLM saturation limits in TCP-C/B (horizontal & skew) in IR7 for RSO1.
= Losses correspond to < 10° protons (less than 1 pilot per injection).

= Correlated with losses in TL & steering. Mitigated with aggressive SPS scraping (~10% - ~20 nominal bunches
per injection).

In 2024
= Significant improvement while SPS scraping at ~4% (BLM talk by S. Morales Virgo & LBOC Y. Dutheil).
= Interlock moved to new BLMs on the WALL increasing margin by factor of ~2 (HL S. Morales Virgo).

= Exact origin of losses remains unclear:
« 2024 vs 2023: shorter trains per LHC injection (i.e. lower intensity per injection).
« Small improvement with “low-tail” BCMS.
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https://indico.cern.ch/event/1445015/contributions/6082814/attachments/2916470/5118288/2024_08_27_LBOC_inj_losses.pdf
https://indico.cern.ch/event/1421594/contributions/6005285/attachments/2943288/5172285/20241009-SaraMorales-HL-LHC-Coll-Meeting.pdf

Injection losses

In 2023:
= High and fast losses during B1 injection: BLM saturation limits in TCP-C/B (horizontal & skew) in IR7 for RSO1.
= Losses correspond to < 10° protons (~1 pilot per injection).

= Corre Follow-up punches

New QTL transfer function for B1 - expect to reduce B1H tails.
Improved margin with new B1 BLMs on the WALL by a factor of 2 & improved injection
losses could allow for longer trains next year.

. 20P> As soon as possible, prepare BLM system for higher acceptable injection losses.

——— p— 1 o o0 B

B. Salvachua, S. Morales
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https://indico.cern.ch/event/1445015/contributions/6082814/attachments/2916470/5118288/2024_08_27_LBOC_inj_losses.pdf
https://indico.cern.ch/event/1421594/contributions/6005285/attachments/2943288/5172285/20241009-SaraMorales-HL-LHC-Coll-Meeting.pdf

Emittance at injection: standard vs BCMS
«  20-25% emittance reduction at LHC injection with BCMS w.r.t to standard, 10-15% at start of SB.

| | BSRT H-plane
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Emittance growth at injection

= Emittance growth mechanism at injection not fully understood ;. Max. brightress
* -20% brightness
. Comﬁarison of measured emittance growth & Fill 10267 L o0% brightness
bundc I length evolution against theoretical IBS
mo e . 4.0 12

W
n

Bunch length (cm)

H Emittance (um)
[=]




Emittance growth at injection

= Emittance growth mechanism at injection not fully understood : Max brightness
» -20% brightness

i : * -60% brightness
. Comﬁarlson of measured emittance growth & BS +0.2 pmh Fill 10267 C MemeireteS

bunch length evolution against theoretical IBS
model.

Horizontal plane:

« Systematically larger in B1H: ~0.6 ym/h in
addition to e-cloud:
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* 0.4 pym/h from IBS.

* 0.2 pm/h of unknown origin:
« even with single bunches.
« brightness independent.
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Emittance growth at injection

= Emittance growth mechanism at injection not fully understood ;. Max. brightress
* -20% brightness

; ; * -60% brightness
. Comﬁarlson of measured emittance growth & BS + 0.2 pmih Fill 10267  Memaromans

bunch length evolution against theoretical IBS
model.

Horizontal plane:

« Systematically larger in B1H: ~0.6 ym/h in
addition to e-cloud:

* 0.4 pym/h from IBS.

* 0.2 pm/h of unknown origin:
« even with single bunches.
« brightness independent.
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Fill 10267 L0
 Low vertical dispersion & good coupling
control = small IBS contribution.

« Measurements suggest some brightness
dependence - possibly underestimating IBS
or emittance exchange with horizontal in the
modeling.

e Linear increase of emittance over time.
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Emittance growth at injection

= Emittance growth mechanism at injection not fully understood.

. Comﬂarison of measured emittance growth &

Fill 10267

* Max. brightness
» -20% brightness
* -60% brightness
* Measurements

bundc I length evolution against theoretical IBS IBS +0.2 pm/h
modael. 40 40

—— Model

Horizontal plane:
« Systematically larger in B1H: ~0.6 ym/h in

addition to e-{
* 0.4 pum/h f
e 0.2um/h ¢

- bP> Minimize time spent at injection.

Vertical plane:
 ~0.1-0.3 pm/h in addition to e-cloud (B1 & B2).

 Low vertical dispersion & good coupling s
control = small IBS contribution. e

« Measurements suggest some brightness
dependence - possibly underestimating IBS
or emittance exchange with horizontal in the
modeling.

e Linear increase of emittance over time.

0 Measured emittance growth for H & V
x IBS model emittance growth for H & V
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Continue investigation of unexplained emittance growth.
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Talls at Injection

Systematic profile monitoring in 2024

* From Fill 9912 (July), full-cycle bunch-by-bunch BSRT profile logging in NXCALS thanks to D. Bultti.
= Profiles at injection had heavily populated tails: g~1.4 at the start of 2024.
= No significant tail reduction with the 15t “low-tail” BCMS variant (July).

= Tail reduction (g~1.2) at LHC injection > Fill 10100 (September), linked to injector tail improvement
traced back to PS with unknown origin.

=  Profile evolution:

 Tend to converge to Gaussian over time, no mechanism of tail population during nominal operation.
« However, tail increase during LHC injection observed during specific MDs.




Tails at injection

Systematic profile monitoring in 2024
* From Fill 9912 (July), full-cycle bunch-by-bunch BSRT profile logging in NXCALS thanks to D. Bultti.
Profiles at injection had heavily populated tails: g~1.4 at the start of 2024.

= NO Si
Follow-up

Tail r ement
traced

Profile

Further improvements on "low-tail” BCMS.

. Tenf* Continue systematic BSRT profile logging & monitoring during whole LHC  {.tion.
- Hovyl cycle to:

« Monitor quality of injected profiles & detect changes.
« Correlate with loss or gain of LHC performance.




Debunched beam at injection & losses during ramp

H. Timko, B. Karlsen-Baeck, M. Zampetakis, HL-WP5

Debunched beam vs IR3 losses

* IR3 high losses at start of Ramp, reaching .
warning levels on BLMs & causing 3 dumps.
- Strong correlation between IR3 losses and B | 2 -—
debunched beam (~up to 50 nominal bunches). 2 S
. . = £ . = £
« Correlation of debunched beam with: L] > <% .
: zE e =g N
« Brightness. 2310 ’,}g& 22 #ﬁ‘
- Time spent at injection. =% | W 5% A
. . . . . aa} 0+° . . m . . .
possibly indicating IBS related mechanism. 00 05 10 15 20 00 05 Lo L5 20
* More critical for BCMS compared to standard Debunched beam (1012 )
due to hlgher brlghtness' Debunched beam in 2024 fills
* M Itl g atl ons. g 2024 Physics fills debunched beam from INJPHYS to RAMP
* Clearly demonstrated by RF that increase of = :
RF voltage is beneficial (talk by B. Karlsen- <
Baeck). 2. |
* Increase of BLM thresholds (talk by S. e - i |
MOraleS). a 0 | iludliLd JML”“ iif'*‘zu”i: sl | LIM‘IJ N%'“ U.»i!ﬁ i Ml“"iz“" !5‘:1:“ e }"H"llii' ittt
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https://indico.cern.ch/event/1421594/contributions/6005285/attachments/2943288/5172285/20241009-SaraMorales-HL-LHC-Coll-Meeting.pdf

Debunched beam at injection & losses during ramp

H. Timko, B. Karlsen-Baeck, M. Zampetakis, HL-WP5

Debunched beam vs IR3 losses

IR3 high losses at start of Ramp, reaching
warning levels on BLMs & causing 3 dumps.

Strong correlation between IR3 losses and
debunched beam (~up to 50 noaminal bunche

Correlatio Follow-up

) B_”ght” Investigate possibility to increase RF voltage (see talk by B. Karlsen-
© TMesH Baeck) & review BLM thresholds.

possibly i L _ L

_..P» Minimize time spent at injection.
MOTe Critl Gommes R e
due to higher brightness.

Mitigations:

* Clearly demonstrated by RF that increase of . :
RF voltage is beneficial (talk by B. Karlsen-
Baeck).

* Increase of BLM thresholds (talk by S.
Morales).

20

Fill 9573 to 10232
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Debunched beam in 2024 fills

2024 Physics fills debunched beam from INJPHYS to RAMP
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https://indico.cern.ch/event/1421594/contributions/6005285/attachments/2943288/5172285/20241009-SaraMorales-HL-LHC-Coll-Meeting.pdf

Power supply ripple at the end of ramp

50 Hz power supply ripple constantly present throughout LHC cycle, real dipolar beam
excitation.

Origin of high-frequency 8 kHz cluster is not understood:

Clear amplitude increase at the end of the ramp when reaching 6.8 TeV.
Sensitivity to tune trims consistent with dipolar excitations.

Significantly attenuated amplitude during p-p ref Run (2.68 TeV).

Impact on performance is unclear, reproducible fill-by-fill.

Fill 10190, B2H

Fill 10309, B2H

A. Valeri Radoslavova
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Power supply ripple at the end of ramp

50 Hz power supply ripple constantly present throughout LHC cycle, real dipolar beam
excitation.

Origin of high-frequency 8 kHz cluster is not understood:
« Clear amplitude increase at the end of the ramp when reaching 6.8 TeV.

Follow-up

Based on the successful compensation of 50Hz in the SPS, should we finally
make a similar effort for the 50Hz ripple in the LHC?

A. Valeri Radoslavova

UTC time 2/10/2024
UTC time 1/11/2024




Losses at the end of adjust/start of collisions

= Large beam lifetime drop (<10 h in some fills) during final seconds of Adjust.

= Driving mechanism:
« DA reduction when entering head-on beam-beam dominated regime.

Fill 10084, (Qx. Q) =(62.31,60.32),Q =20, I, = 400A
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Losses at the end of adjust/start of collisions

= Large beam lifetime drop (<10 h in some fills) during final seconds of Adjust.
= Driving mechanism:
« DA reduction when entering head-on beam-beam dominated regime.

 Clear correlation between tails & losses:
|.  First observations from MDs with groups of low-tail & large-tail bunches.

II. Confirmed in nominal fills.

Fill 9935: July 26, 2024 at 05:34:16

B2 T TR -
108 Bunch 0 Bunch 1989 105 1 \ 1375 i 9
. E Bunch 341 = Bunch 2190 6
B Bunch 547 - Bunch 2463 : 19
: B Bunch 894 N Bunch 2737 o 1 .350 E
107 d Bunch 1095 © Bunch 3011 ' i (i 5.
i Bunch 1441 —— g,,,=80 mb . ] 1 TR Qa
¢ Bunch 1642 it 4 1.325
3 %4 Sk ~ 10 =
10 '
b ..,',ew _g 5)
LR /
= il = H H 1.300
E % < Low tails = Large tails g
= Large tails o £k 1275 %
&E-F."k'lé.r R 3,;_ Loty ceg i 103 S
10* sj,;;;.‘“ ﬂ%%f”fﬂ g gl 5
e “yﬁ%*‘ % 1.250 %
PG Y Y O
10° EREAS i i
o TN TITY ' 12258
Burn-off limit/ T UL o S
2 IR RN L
’ 34 5:4 05.57 1.200
08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 05:: 05: 5_ :
Time

Q@ g 24




Losses at the end of adjust/start of collisions

= Large beam lifetime drop (<10 h in some fills) during final seconds of Adjust.

= Driving mechanism:
« DA reduction when entering head-on beam-beam dominated regime.
« Clear correlation between tails & losses:
|.  First observations from MDs with groups of low-tail & large-tail bunches.

II. Confirmed in nominal fills.

Ill. Losses reduced close to burn-off limit by September with “low-tail”’: strong correlation of
tail reduction & loss reduction at the start of SB.

1.6

Effective cross section (mb)




Losses during collisions

= Observed beam lifetime degradation with extended stay at 1.2 m, P, <MHirqer DETOre leveling.

Fill 9864 in July: Fill 10100 in September:
1. Nominal BCMS 1. “Low-tail” BCMS
2. Extended stay at1.2m 2. Shortstayatl.2m
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Losses during collisions

= Observed beam lifetime degradation with extended stay at 1.2 m, P, <MHirqer DETOre leveling.

Fill 9864 in July: Fill 10100 in September:
1. Nominal BCMS 1. “Low-tail” BCMS
2. Extended stay at1.2m 2. Shortstayatl.2m
P2 N . i
Y e T 3
. DA < 60 due to: o
High brightness . o .
High chromaticity 1 o . \ o
High octupoles \ PR 205\ »' \\_ s g
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T 2. DA > 60 due to: o

Chromaticity reduction (major contributor).
Bunch intensity decrease (major contributor).

) Crossing angle increase (minor contributor).
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Losses during collisions

= Observed beam lifetime degradation with extended stay at 1.2 m, P, <MHirqer DETOre leveling.

Fill 9864 in July: Fill 10100 in September:
1. Nominal BCMS 1. “Low-tail” BCMS
2. Extended stay at1.2m 2. Shortstayatl.2m
§2 /V*‘_ Aw_:x;:_xﬂ Ez
"u ," l‘. ‘|IJ H.‘\‘ L\ ‘U HJ o amias
0 VAL WAV 0
1.25 170 20 1.25 170 20
\ SN A\
o Impact on integrated luminosity: | Impact on integrated luminosity:
:;_t;lel() Up to* 5.2% loss A“;;leIO Up to 1.5% loss
fis ‘ for fills that reached optimal fill length |:.s  |for fills that reached optimal fill length
7 10 ;1.0 ‘
“u M i
01:55 Time 02:16 ’ 12:21 } 12:43
*Exact contribution of tails on luminosity to be refined "™
Losses equivalent to ~90 nominal Losses equivalent to ~20 nominal

bunches in 1st hour of SB bunches in 1st hour of SB




Losses during collisions

= Observed beam lifetime degradation with extended stay at 1.2 m, P, <MHirqer DETOre leveling.

Follow-up

Aim to inject in LHC profiles as close as possible to Gaussian from the
Injectors.

Reaching DA = 60 at end of adjust/start of leveling is critical to minimize

losses:

« chromaticity reduction after emittance scans or as quickly as possible.
« combined with “low-tail” BCMS.
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Emittance growth at collisions

Emittance growth of unknown origin also during collisions:

« Cannot be fully explained by IBS models.

« Vertical emittance expected to be shrinking due to SR.
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Emittance growth at collisions

« Emittance growth of unknown origin also during collisions:
« Cannot be fully explained by IBS models.

« Vertical emittance expected to be shrinking due to SR.
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Emittance growth at collisions

« Emittance growth of unknown origin also during collisions:
« Cannot be fully explained by IBS models.

« Vertical emittance expected to be shrinking due to SR.

Luminosity model with IBS & SR & extra emittance growth
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Lessons learned from 2024

= Need to minimize time spent at LHC injection due to:
.  Unexplained emittance growth at injection.
ll. Increase of debunched beam & eventually losses during ramp.
» Longer trains for 2025 due to faster injection time & gain in integrated luminosity (see X. Buffat):

 Injection losses: source remains unclear, increase of margin to BLM saturation for B1 w.r.t 2023.
= Standard vs BCMS:

« Start of collisions with 10-15% smaller emittances.

Depending on virtual luminosity, 2-5% gain in performance w.r.t to standard for fills that reached
optimal fill length.

« Main gain comes from “low-tail” BCMS:

« Clear correlation between losses at the end of collapse/start of collisions and tail
population: reduction of tails observed Fills>10100 (10" of September), starting from tail
reduction in the injectors, resulted in loss improvement at start of collisions:

Preparation from the injectors has direct impact on LHC performance: to be considered not only for
nominal operation but also for special beams (VdM & BSRT calibration fills).
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Lessons learned from 2024

= Minimize losses during collisions:
|. Start LHC injection with profiles as close as possible to Gaussian from the injectors.

« Talil increase for B1 from SPS to LHC due to transfer line mismatch, expected to improve
with new transfer function.

» Further improve & optimize “low-tail” BCMS in the injectors.
Il. Critical to maintain DA target of 60 at end of adjust/start of leveling:
= 2024 DA below target at this stage & improved during leveling = seen on beam lifetime.

= DA can be increased by reducing non-linearities (e.g. chromaticity reduction after emittance
scans, switching to negative octupole polarity).

« Other issues: unknown emittance growth at injection & collisions, 50 Hz ripple..

 Need for more automatic tools for profile monitoring and losses in the injectors &
throughout the whole LHC cycle to detect changes fast & efficiently and eventually
connect with gain or loss of LHC performance.

Thank you!
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A closer look In the SPS

= Measurements from high-intensity MDs (4x48b, ~2.3el11 ppb at SPS extraction), similar
observations with 2024 nominal configuration.

» Similar trends observed between SPS extraction—>LHC injection due to transfer line mismatch.

» Emittance reduction through tune optimizations.

« SPS scraping fully correlated with tails at SPS extraction/LHC injection: In 2024, Gaussian
bunch profiles and nominal intensity with ~15% scraping.
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PSB scraping
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PS optimization during y;,,s Crossing

Tune Optimization on PS: Step #1 Tune Optimization on PS: Step #2

+¢ Horizontal tune decrease before and after transition s+ Vertical tune decrease after transition crossing

crossing using the LEQs and the PFWs respectively using the the PFWs
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SPS measurements with 3x36 1.6el1 ppb

I. Mases Sole, F. Asvesta

18 Horizontal and vertical emittance. Operational beam BCMS 3x36 bunches. 16 Horizontal and vertical g-factors. Operational beam BCMS 3x36 bunches.
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Losses during collisions: DA for 2024
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Statistics from 2024
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Luminosity model: pure model

Fill 10073, intensity and emittance from model
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Luminosity model: extra losses

Till 10073, intensity from data, emittance from model
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Luminosity model: extra losses & emit growth

Fill 10073, intensity from model, emittance from fit data
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LHC injection profiles vs SPS scraping

B1H, start of injection, BSRT
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Losses during the collapse of the separation bump
& start of collisions
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Losses during the collapse of the separation bump
& start of collisions

Collisions in IP1/2/5/8 Collisions in IP1/2/5
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Losses during collapse and collisions

$2pys =155.77 prad, 1,,=400 A, on_disp=0, (Qx, @,) =(62.31, 60.32), Q'=20,
Np=1.6-10"! ppb, 6.=9 cm, £, =1.8 um, fjp;s=1.2 m
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Luminosity model

Fill 10073, intensity from model, emittance from fit data
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Performance gain BCMS vs standard

Fill 9614, Standard Fill 9667, BCMS
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onsidering a turn-around time of 2.5h:
From 1.22 fb-1/day with standard to 1.32 fb-t/day with BCMS: +8.2% integrated luminosity for fills that make it to
the optimal fill length (>8h), 5% from the lower emittance and 3.2% from the intensity increase.




Emittance growth at injection

= Emittance growth mechanism at injection
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Emittance growth at injection

= Emittance growth mechanism at injection
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Impact of improved losses

Nominal

& oo 10 10

1000 m— Fill 9864
= Fill 10100

1000

)
2

0!

[lede bt

¥

& i & it & i
“Time in SB (h) Time in SB (h) Time in SB (h)

=N
z
=l
=
g
Sim
el
B

:

Fill 9864

20 30 40 50
Time in SB (mins)

<o
[—
o

Fill 9864
Smoothed 9864
Fill 10100
Smoothed 10100

[

‘HJ
Time in 8B (h)

—~ o o
© , 7 7
s s
90 10 = =
E 600 m "
~ Eos w5 5
= =0 Eix Eix
bu 04 Zus Eus
- — F g

200 Fill 10100

& nsol

0 10 20 30 40 50

1000

Time in SB (mins) % w —~
5 =

[ i
Time in B (h)




Tails at injection

= Systematic profile monitoring in 2024
* From Fill 9912 (July), full-cycle bunch-by-bunch BSRT profile logging in NXCALS thanks to D. Bultti.

Note on special beams (1/2):

« BSRT profiles must be deconvoluted.

« Deconvolution relies on specific information obtained during BSRT calibration fills.

« In 2024 preparation & effort from the injectors to provide Gaussian beams during
these fills & simplify deconvolution, similar type of preparation for next year.




Impact on integrated luminosity

* Luminosity model provides accurate predictions for beam parameter evolution & luminosity estimates
throughout a fill: can include additional effects beyond theoretical models to match the data.

« Considering ideal case where fills are dumped at optimal fill length and turn-around of 2.5 h.
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Standard vs nominal BCMS in 2024 s ) . h
Assuming -15% emittance reduction at start of SBas Low-tail” BCMS: \
{  only difference: \ { = On average, reduction of o from ~100 mbto ~85mb

* Bnin2 36cm: 5% gain, confirmed with experimental data.
* Bnin=30cm & 1.65e11 ppb: 2-2.5% gain.
for fills that made it to optimal fill length (10h) with 7=2.5 h

i after Fill 10100.

i« Exact contribution of tails on luminosity to be studied.

{ « Maximum gain up to 4% for fills reaching optimal fill
length with 7=2.5 h.
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