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Motivation
▪ Main indicators of beam quality:

➢ Emittance: avoiding emittance growth

➢ Intensity: minimizing losses & preventing beam dumps

➢ Tail population: preserving tails & avoiding tail increase

from the injectors to the LHC.

▪ Degradation starts already in the injectors and continues throughout the LHC. 

▪ Goal is to:

• Identify where the degradation occurs.

• Understand the cause.

• Evaluate the impact on LHC performance & define priorities.

• Provide recommendations to optimize performance for next year & next runs.
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Overview
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I. Beam quality in the injectors:
1. Emittance growth PSB→ PS → SPS, standard vs BCMS beams.

2. Tail population from PSB→ PS → SPS & “low-tail” BCMS.

3. Losses from PS → SPS.

III. Impact on integrated luminosity: 
▪ BCMS vs standard: model vs measurements

▪ Reduction of losses with ”low-tail” BCMS.

▪ Impact of emittance growth beyond IBS.

IV. Lessons learned from 2024. 

II. Beam quality in the LHC:
1. Tail population SPS→ LHC & transfer line mismatch.

2. Injection losses: 2024 vs 2023.

3. Emittance with standard & BCMS beams.

4. Emittance growth at injection beyond IBS & tail evolution.

5. Debunched beam at injection & losses at the start of ramp.

6. Power supply ripple at the end of ramp.

7. Losses at the end of adjust & correlation with tails.

8. Losses during leveling & DA.

9. Losses beyond burn-off due to collisions in IP8

10. Emittance growth during collisions.
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5

▪ Emittance measurements at PSB→ PS → SPS:

• Emittance blowup along the chain: 

• ~5% PSB extraction→ PS extraction

• ~15-20% PS extraction → SPS after scraping:

I. PS extraction → SPS injection: emittance growth & tail population, trends similar to 
observation from SPS → LHC transfer line mismatch, under investigation.

II. SPS flat bottom: improved with tune optimizations IPP I. Mases Sole.

• Standard vs BCMS: ~25% reduction in emittance with BCMS at SPS after scraping.

F. Asvesta, I. Mases Sole

Emittance evolution in the injectors

https://indico.cern.ch/event/1470711/contributions/6191634/subcontributions/513237/attachments/2963490/5212974/2024_11_08_IPP_2024_LIU_beams.pdf


▪ Systematic q-factor increase (~5-15%) PS 
extraction → SPS after scraping.

▪ Significant improvements in tail population 
during 2024:

1st ”low-tail” BCMS variant: 

▪ Introduction of PSB scraping, achieving q=1 at extraction.

▪ Significant tail increase during PS γtrans transition crossing 
related to space charge: improved with PS tune 
optimizations IPP M. Bozatzis.

▪ No clear tail improvement at LHC injection.

2nd ”low-tail” BCMS variant:

▪ Source of improvement not fully understood, traced back 
to PS.

▪ Clear tail reduction at LHC injection.

▪ ~5% losses in SPS before scraping: 

• Injection losses, slow losses, losses during ramp.

• Improvement with “low-tail” BCMS.

Tail evolution & losses in the injectors
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F. Asvesta, M. Bozatzis, I. Mases Sole

Reduction also seen 

at LHC injection

J. Flowerdew, A. Lasheen

https://indico.cern.ch/event/1429489/contributions/6013379/attachments/2891264/5068134/IPP_PS_Sim_Opt.pdf
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F. Asvesta, M. Bozatzis, I. Mases Sole

Reduction also seen 

at LHC injection

J. Flowerdew, A. Lasheen

▪ Further tail & emittance improvements from PS extraction → SPS extraction.

▪ Try to understand origin of tail reduction in the PS on the 10th of September.

➢ Need for online analysis of SPS losses & automatic profile measurements to 

monitor quality of injected LHC profiles & detect changes fast and efficiently.

Follow-up

Tail evolution & losses in the injectors

https://indico.cern.ch/event/1429489/contributions/6013379/attachments/2891264/5068134/IPP_PS_Sim_Opt.pdf
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SPS extraction to LHC injection
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▪ Systematically observed tail population increase in
B1H pointing to transfer line mismatch.

• Tested new QTL transfer function prepared by 
ABT: 

• MD with INDIVs q=1 at SPS extraction, 
achieved with ~18% scraping. 

• q=1 maintained for B1V and B2H & V at LHC 
injection, while q=1.2 for B1H.

• Tail comparison at LHC injection with nominal 
and new QTL transfer functions clearly shows 
mismatch improvement.

➢ Optimizations to be deployed in 2025. 

B1H B2H

WS in SPS
WS in LHC

B1H

New TF

F. Velotti, Y. Dutheil, 
C. Bracco, M. Hostettler



Injection losses
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In 2023:

▪ High and fast losses during B1 injection: BLM saturation limits in TCP-C/B (horizontal & skew) in IR7 for RS01. 

▪ Losses correspond to < 109 protons (less than 1 pilot per injection).

▪ Correlated with losses in TL & steering. Mitigated with aggressive SPS scraping (~10% → ~20 nominal bunches 
per injection).

In 2024:

▪ Significant improvement while SPS scraping at ~4% (BLM talk by S. Morales Virgo & LBOC Y. Dutheil). 

▪ Interlock moved to new BLMs on the WALL increasing margin by factor of ~2 (HL S. Morales Virgo).

▪ Exact origin of losses remains unclear:

• 2024 vs 2023: shorter trains per LHC injection (i.e. lower intensity per injection).
• Small improvement with “low-tail” BCMS. Y. Dutheil, F. Velotti, C. Bracco,

B. Salvachua, S. Morales
BLM limit

https://indico.cern.ch/event/1445015/contributions/6082814/attachments/2916470/5118288/2024_08_27_LBOC_inj_losses.pdf
https://indico.cern.ch/event/1421594/contributions/6005285/attachments/2943288/5172285/20241009-SaraMorales-HL-LHC-Coll-Meeting.pdf
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In 2023:

▪ High and fast losses during B1 injection: BLM saturation limits in TCP-C/B (horizontal & skew) in IR7 for RS01. 

▪ Losses correspond to < 109 protons (~1 pilot per injection).

▪ Correlated with losses in TL & steering. Mitigated with aggressive SPS scraping (~10% → ~20 nominal bunches 
per injection).

In 2024:

▪ Significant improvement while SPS scraping at ~4% (BLM talk by S. Morales Virgo & LBOC Y. Dutheil). 

▪ Interlock moved to new BLMs on the WALL increasing margin by factor of ~10 (HL S. Morales Virgo).

▪ Exact origin of losses remains unclear:

• 2024 vs 2023: shorter trains per LHC injection (i.e. lower intensity per injection).
• Small improvement with “low-tail” BCMS. Y. Dutheil, F. Velotti, C. Bracco,

B. Salvachua, S. Morales
BLM limit

▪ New QTL transfer function for B1 → expect to reduce B1H tails.

▪ Improved margin with new B1 BLMs on the WALL by a factor of 2 & improved injection 

losses could allow for longer trains next year.

➢ As soon as possible, prepare BLM system for higher acceptable injection losses.

Follow-up

https://indico.cern.ch/event/1445015/contributions/6082814/attachments/2916470/5118288/2024_08_27_LBOC_inj_losses.pdf
https://indico.cern.ch/event/1421594/contributions/6005285/attachments/2943288/5172285/20241009-SaraMorales-HL-LHC-Coll-Meeting.pdf


Emittance at injection: standard vs BCMS
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Emittance 
(μm)

B1H B1V B2H B2V

Standard 1.56 1.58 1.5 1.5

BCMS 1.19 1.27 1.13 1.17

% -23.8 -19.84 -24.96 -22.33

• 20-25% emittance reduction at LHC injection with BCMS w.r.t to standard, 10-15% at start of SB.

Start of injection

Standard BCMS Low-tail 

BCMS

Low-tail 

BCMS

BCMS

Emittance 
(μm)

B1H B1V B2H B2V

Standard 1.77 1.71 1.63 1.61

BCMS 1.47 1.42 1.31 1.31

% -16.85 -16.77 -19.55 -18.97

Emittance 
(μm)

B1H B1V B2H B2V

Standard 1.84 1.67 2.25 2.3

BCMS 1.57 1.54 1.97 2.02

% -14.74 -7.38 -12.48 -12.06

End of injection Start of Stable Beams

BSRT H-plane
BSRT V-plane

Impact on integrated luminosity:

15% smaller emittance start of collisions (nominal BCMS)
• βmin≥ 36cm: 5% gain, confirmed with experimental data.

• βmin= 30cm & 1.65e11 ppb: 2-2.5% gain.



▪ Emittance growth mechanism at injection not fully understood.

Emittance growth at injection
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• Max. brightness 

• -20% brightness 

• -60% brightness

• Measurements
▪ Comparison of measured emittance growth & 

bunch length evolution against theoretical IBS 
model.



▪ Emittance growth mechanism at injection not fully understood.

Emittance growth at injection
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o Measured emittance growth for H & V

x IBS model emittance growth for H & V
Emittance growth in H with unknown 

origin after subtracting IBS contribution

• Max. brightness 

• -20% brightness 

• -60% brightness

• Measurements
▪ Comparison of measured emittance growth & 

bunch length evolution against theoretical IBS 
model.

Horizontal plane: 

• Systematically larger in B1H: ~0.6 μm/h in 
addition to e-cloud:

• 0.4 μm/h from IBS.

• 0.2 μm/h of unknown origin: 

• even with single bunches. 

• brightness independent.

IBS + 0.2 μm/h



▪ Emittance growth mechanism at injection not fully understood.

Emittance growth at injection
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o Measured emittance growth for H & V

x IBS model emittance growth for H & V
Emittance growth in H with unknown 

origin after subtracting IBS contribution

• Max. brightness 

• -20% brightness 

• -60% brightness

• Measurements
▪ Comparison of measured emittance growth & 

bunch length evolution against theoretical IBS 
model.

Horizontal plane: 

• Systematically larger in B1H: ~0.6 μm/h in 
addition to e-cloud:

• 0.4 μm/h from IBS.

• 0.2 μm/h of unknown origin: 

• even with single bunches. 

• brightness independent.

Vertical plane:

• ~0.1-0.3 μm/h in addition to e-cloud (B1 & B2).

• Low vertical dispersion & good coupling 
control → small IBS contribution.

• Measurements suggest some brightness 
dependence → possibly underestimating IBS 
or emittance exchange with horizontal in the 
modeling.

• Linear increase of emittance over time.

IBS + 0.2 μm/h



▪ Emittance growth mechanism at injection not fully understood.

Emittance growth at injection

16

o Measured emittance growth for H & V

x IBS model emittance growth for H & V
Emittance growth in H with unknown 

origin after subtracting IBS contribution

• Max. brightness 

• -20% brightness 

• -60% brightness

• Measurements
▪ Comparison of measured emittance growth & 

bunch length evolution against theoretical IBS 
model.

Horizontal plane: 

• Systematically larger in B1H: ~0.6 μm/h in 
addition to e-cloud:

• 0.4 μm/h from IBS.

• 0.2 μm/h of unknown origin: 

• even with single bunches. 

• brightness independent.

Vertical plane:

• ~0.1-0.3 μm/h in addition to e-cloud (B1 & B2).

• Low vertical dispersion & good coupling 
control → small IBS contribution.

• Measurements suggest some brightness 
dependence → possibly underestimating IBS 
or emittance exchange with horizontal in the 
modeling.

• Linear increase of emittance over time.

▪ Continue investigation of unexplained emittance growth.

➢ Minimize time spent at injection.

Follow-up

IBS + 0.2 μm/h



Tails at injection

17

▪ Systematic profile monitoring in 2024:

• From Fill 9912 (July), full-cycle bunch-by-bunch BSRT profile logging in NXCALS thanks to D. Butti.

▪ Profiles at injection had heavily populated tails: q~1.4 at the start of 2024.

▪ No significant tail reduction with the 1st “low-tail” BCMS variant (July).

▪ Tail reduction (q~1.2) at LHC injection > Fill 10100 (September), linked to injector tail improvement 
traced back to PS with unknown origin.

▪ Profile evolution:

• Tend to converge to Gaussian over time, no mechanism of tail population during nominal operation.

• However, tail increase during LHC injection observed during specific MDs.

10th of September



Tails at injection
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▪ Systematic profile monitoring in 2024:

• From Fill 9912 (July), full-cycle bunch-by-bunch BSRT profile logging in NXCALS thanks to D. Butti.

▪ Profiles at injection had heavily populated tails: q~1.4 at the start of 2024.

▪ No significant tail reduction with the 1st “low-tail” BCMS variant (July).

▪ Tail reduction (q~1.2) at LHC injection > Fill 10100 (September), linked to injector tail improvement 
traced back to PS with unknown origin.

▪ Profile evolution:

• Tend to converge to Gaussian over time, no mechanism of tail population during nominal operation.

• However, tail increase during LHC injection observed during specific MDs.

▪ Further improvements on ”low-tail” BCMS.

▪ Continue systematic BSRT profile logging & monitoring during whole LHC 

cycle to:

• Monitor quality of injected profiles & detect changes.

• Correlate with loss or gain of LHC performance.

Follow-up



Debunched beam at injection & losses during ramp 
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H. Timko, B. Karlsen-Baeck, M. Zampetakis, HL-WP5 

• IR3 high losses at start of Ramp, reaching 
warning levels on BLMs & causing 3 dumps.

• Strong correlation between IR3 losses and 
debunched beam (~up to 50 nominal bunches).

• Correlation of debunched beam with:

• Brightness.

• Time spent at injection.

possibly indicating IBS related mechanism. 

• More critical for BCMS compared to standard 
due to higher brightness.

• Mitigations:

• Clearly demonstrated by RF that increase of 
RF voltage is beneficial (talk by B. Karlsen-
Baeck).

• Increase of BLM thresholds (talk by S. 
Morales).

Debunched beam in 2024 fills

Debunched beam vs IR3 losses

https://indico.cern.ch/event/1421594/contributions/6005285/attachments/2943288/5172285/20241009-SaraMorales-HL-LHC-Coll-Meeting.pdf


Debunched beam in 2024 fills

Debunched beam vs IR3 losses

Debunched beam at injection & losses during ramp 

20

• IR3 high losses at start of Ramp, reaching 
warning levels on BLMs & causing 3 dumps.

• Strong correlation between IR3 losses and 
debunched beam (~up to 50 nominal bunches).

• Correlation of debunched beam with:

• Brightness.

• Time spent at injection.

possibly indicating IBS related mechanism. 

• More critical for BCMS compared to standard 
due to higher brightness.

• Mitigations:

• Clearly demonstrated by RF that increase of 
RF voltage is beneficial (talk by B. Karlsen-
Baeck).

• Increase of BLM thresholds (talk by S. 
Morales).

Debunched beam in 2024 fills

▪ Investigate possibility to increase RF voltage (see talk by B. Karlsen-

Baeck) & review BLM thresholds.

➢ Minimize time spent at injection.

H. Timko, B. Karlsen-Baeck, M. Zampetakis, HL-WP5 

Follow-up

https://indico.cern.ch/event/1421594/contributions/6005285/attachments/2943288/5172285/20241009-SaraMorales-HL-LHC-Coll-Meeting.pdf


Power supply ripple at the end of ramp
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▪ 50 Hz power supply ripple constantly present throughout LHC cycle, real dipolar beam 
excitation.

▪ Origin of high-frequency 8 kHz cluster is not understood:

• Clear amplitude increase at the end of the ramp when reaching 6.8 TeV. 

• Sensitivity to tune trims consistent with dipolar excitations.

• Significantly attenuated amplitude during p-p ref Run (2.68 TeV).

• Impact on performance is unclear, reproducible fill-by-fill.

Nominal fill p-p ref
A. Valeri Radoslavova



Power supply ripple at the end of ramp
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▪ 50 Hz power supply ripple constantly present throughout LHC cycle, real dipolar beam 
excitation.

▪ Origin of high-frequency 8 kHz cluster is not understood:

• Clear amplitude increase at the end of the ramp when reaching 6.8 TeV. 

• Sensitivity to tune trims consistent with dipolar excitations.

• Significantly attenuated amplitude during p-p ref Run (2.68 TeV).

• Impact on performance is unclear, reproducible fill-by-fill.

Nominal fill p-p ref
A. Valeri Radoslavova

▪ Based on the successful compensation of 50Hz in the SPS, should we finally 

make a similar effort for the 50Hz ripple in the LHC? 

Follow-up



▪ Large beam lifetime drop (<10 h in some fills) during final seconds of Adjust.

▪ Driving mechanism:

• DA reduction when entering head-on beam-beam dominated regime.

Losses at the end of adjust/start of collisions

23

DA target of 6σ



▪ Large beam lifetime drop (<10 h in some fills) during final seconds of Adjust.

▪ Driving mechanism:

• DA reduction when entering head-on beam-beam dominated regime.

• Clear correlation between tails & losses:

I. First observations from MDs with groups of low-tail & large-tail bunches.

II. Confirmed in nominal fills.

Losses at the end of adjust/start of collisions

24

Burn-off limit

Large tails Low tails
Low tails → Large tails



Losses at the end of adjust/start of collisions
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▪ Large beam lifetime drop (<10 h in some fills) during final seconds of Adjust.

▪ Driving mechanism:

• DA reduction when entering head-on beam-beam dominated regime.

• Clear correlation between tails & losses:

I. First observations from MDs with groups of low-tail & large-tail bunches.

II. Confirmed in nominal fills.

III. Losses reduced close to burn-off limit by September with “low-tail”: strong correlation of 
tail reduction & loss reduction at the start of SB.

10th of September



Losses during collisions
▪ Observed beam lifetime degradation with extended stay at 1.2 m, μmax<μtarget before leveling.
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Fill 10100 in September:

1. “Low-tail” BCMS

2. Short stay at 1.2 m

Fill 9864 in July:

1. Nominal BCMS

2. Extended stay at 1.2 m

Losses equivalent to ~90 nominal 

bunches in 1st hour of SB

Losses equivalent to ~20 nominal 

bunches in 1st hour of SB



Losses during collisions
▪ Observed beam lifetime degradation with extended stay at 1.2 m, μmax<μtarget before leveling.
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Fill 10100 in September:

1. “Low-tail” BCMS

2. Short stay at 1.2 m

Fill 9864 in July:

1. Nominal BCMS

2. Extended stay at 1.2 m

Losses equivalent to ~90 nominal 

bunches in 1st hour of SB

Losses equivalent to ~20 nominal 

bunches in 1st hour of SB

1. DA < 6σ due to:
• High brightness

• High chromaticity

• High octupoles

• Small crossing angle

2. DA > 6σ due to:
• Chromaticity reduction (major contributor).

• Bunch intensity decrease (major contributor).

• Crossing angle increase (minor contributor).



Losses during collisions
▪ Observed beam lifetime degradation with extended stay at 1.2 m, μmax<μtarget before leveling.
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Fill 10100 in September:

1. “Low-tail” BCMS

2. Short stay at 1.2 m

Fill 9864 in July:

1. Nominal BCMS

2. Extended stay at 1.2 m

Losses equivalent to ~90 nominal 

bunches in 1st hour of SB

Losses equivalent to ~20 nominal 

bunches in 1st hour of SB

Impact on integrated luminosity:

Up to* 5.2% loss 

for fills that reached optimal fill length

Impact on integrated luminosity:

Up to 1.5% loss

for fills that reached optimal fill length

*Exact contribution of tails on luminosity to be refined



Losses during collisions
▪ Observed beam lifetime degradation with extended stay at 1.2 m, μmax<μtarget before leveling.
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Fill 10100 in September:

1. “Low-tail” BCMS

2. Short stay at 1.2 m

Fill 9864 in July:

1. Nominal BCMS

2. Extended stay at 1.2 m

Losses equivalent to ~90 nominal 

bunches in 1st hour of SB

Losses equivalent to ~20 nominal 

bunches in 1st hour of SB

Up to* 5.2% loss of integrated lumi

for fills that reached optimal fill length

Up to 1.5% loss of integrated lumi

for fills that reached optimal fill length

➢ Aim to inject in LHC profiles as close as possible to Gaussian from the 

injectors.

▪ Reaching DA ≥ 6σ at end of adjust/start of leveling is critical to minimize 

losses:

• chromaticity reduction after emittance scans or as quickly as possible.

• combined with “low-tail” BCMS.

*Exact contribution of tails on luminosity to be refined

Follow-up



Emittance growth at collisions

30

• Emittance growth of unknown origin also during collisions:

• Cannot be fully explained by IBS models.

• Vertical emittance expected to be shrinking due to SR.



Emittance growth at collisions
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• Emittance growth of unknown origin also during collisions:

• Cannot be fully explained by IBS models.

• Vertical emittance expected to be shrinking due to SR.

Luminosity model with IBS & SR



Emittance growth at collisions
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• Emittance growth of unknown origin also during collisions:

• Cannot be fully explained by IBS models.

• Vertical emittance expected to be shrinking due to SR.

Impact on integrated luminosity:

2-3% loss for fills that reached 

optimal fill length & τ=2.5 h           

Luminosity model with IBS & SR & extra emittance growth



Lessons learned from 2024
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▪ Need to minimize time spent at LHC injection due to:

I. Unexplained emittance growth at injection.

II. Increase of debunched beam & eventually losses during ramp.

➢ Longer trains for 2025 due to faster injection time & gain in integrated luminosity (see X. Buffat):

• Injection losses: source remains unclear, increase of margin to BLM saturation for B1 w.r.t 2023.

▪ Standard vs BCMS:

• Start of collisions with 10-15% smaller emittances.

• Depending on virtual luminosity, 2-5% gain in performance w.r.t to standard for fills that reached 
optimal fill length. 

• Main gain comes from “low-tail” BCMS: 

• Clear correlation between losses at the end of collapse/start of collisions and tail 
population: reduction of tails observed Fills>10100 (10th of September), starting from tail 
reduction in the injectors, resulted in loss improvement at start of collisions:

• Preparation from the injectors has direct impact on LHC performance: to be considered not only for 
nominal operation but also for special beams (VdM & BSRT calibration fills).



Lessons learned from 2024

34

▪ Minimize losses during collisions:

I. Start LHC injection with profiles as close as possible to Gaussian from the injectors.

• Tail increase for B1 from SPS to LHC due to transfer line mismatch, expected to improve 
with new transfer function.

➢ Further improve & optimize “low-tail” BCMS in the injectors.

II. Critical to maintain DA target of 6σ at end of adjust/start of leveling: 

▪ 2024 DA below target at this stage & improved during leveling → seen on beam lifetime.

▪ DA can be increased by reducing non-linearities (e.g. chromaticity reduction after emittance 
scans, switching to negative octupole polarity). 

• Other issues: unknown emittance growth at injection & collisions, 50 Hz ripple..

• Need for more automatic tools for profile monitoring and losses in the injectors & 
throughout the whole LHC cycle to detect changes fast & efficiently and eventually 
connect with gain or loss of LHC performance. 

Thank you!



Backup
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▪ Measurements from high-intensity MDs (4x48b, ~2.3e11 ppb at SPS extraction), similar 
observations with 2024 nominal configuration.

• Emittance and q-factor increase PS extraction→SPS injection:

➢ Similar trends observed between SPS extraction→LHC injection due to transfer line mismatch.

• Emittance blowup & tail population at SPS flat bottom:

➢ Emittance reduction through tune optimizations.

• SPS scraping fully correlated with tails at SPS extraction/LHC injection: In 2024, Gaussian 
bunch profiles and nominal intensity with ~15% scraping.

A closer look in the SPS
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I. Mases Sole, F. Asvesta



PSB scraping
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F. Asvesta

PSB Transmission Tails before/after scraping



PS optimization during γtrans crossing

38

M. Bozatzis, F. Asvesta



SPS measurements with 3x36 1.6e11 ppb
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Losses during collisions: DA for 2024
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Statistics from 2024

41



Leveling time
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Luminosity model: pure model
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Luminosity model: extra losses
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Luminosity model: extra losses & emit growth
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LHC injection profiles vs SPS scraping
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Losses during the collapse of the separation bump 
& start of collisions

Collisions in IP1/2/5/8 Collisions in IP1/2/5

• First year where 
we also observe 
impact from 
LHCb: LHCb
luminosity 2e33 
Hz/cm2 while 
ATLAS/CMS 2e34 
Hz/cm2
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Losses during the collapse of the separation bump 
& start of collisions

Collisions in IP1/2/5/8 Collisions in IP1/2/5

• First year where 
we also observe 
impact from 
LHCb: LHCb
luminosity 2e33 
Hz/cm2 while 
ATLAS/CMS 2e34 
Hz/cm2



Losses during collapse and collisions

49

▪ Good correlation between DA and beam lifetime.

▪ Beam lifetime of ~10h indicates DA<4.5 σ



Luminosity model 
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Performance gain BCMS vs standard
Fill 9614, Standard Fill 9667, BCMS

Considering a turn-around time of 2.5h:

• From 1.22 fb-1/day with standard to 1.32 fb-1/day with BCMS: +8.2% integrated luminosity for fills that make it to 

the optimal fill length (>8h), 5% from the lower emittance and 3.2% from the intensity increase. 
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Emittance growth at injection

52

▪ Emittance growth mechanism at injection not fully understood:



Emittance growth at injection
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▪ Emittance growth mechanism at injection not fully understood:



Impact of improved losses
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Nominal

Fill 9864

Fill 10100



Tails at injection
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▪ Systematic profile monitoring in 2024:

• From Fill 9912 (July), full-cycle bunch-by-bunch BSRT profile logging in NXCALS thanks to D. Butti.

Note on special beams (1/2): 

• BSRT profiles must be deconvoluted.

• Deconvolution relies on specific information obtained during BSRT calibration fills.

• In 2024 preparation & effort from the injectors to provide Gaussian beams during 

these fills & simplify deconvolution, similar type of preparation for next year.



Impact on integrated luminosity
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• Luminosity model provides accurate predictions for beam parameter evolution & luminosity estimates 
throughout a fill: can include additional effects beyond theoretical models to match the data.

• Considering ideal case where fills are dumped at optimal fill length and turn-around of 2.5 h.

Standard vs nominal BCMS in 2024
Assuming -15% emittance reduction at start of SB as 

only difference:

• βmin≥ 36cm: 5% gain, confirmed with experimental data.

• βmin= 30cm & 1.65e11 ppb: 2-2.5% gain.

for fills that made it to optimal fill length (10h) with τ=2.5 h

“Low-tail” BCMS:
• On average, reduction of σeff from ~100 mb to ~85 mb 

after Fill 10100.

• Exact contribution of tails on luminosity to be studied.

• Maximum gain up to 4% for fills reaching optimal fill 

length with τ=2.5 h.


