

Ions: Overview and Outlook Across the Complex

Maciej Slupecki, R. Alemany Fernandez, T. Argyropoulos, H. Bartosik, G. Bellodi, M. Bozzolan, R. Bruce, F. Carlier, N. Charitonidis, H. Damerau, M. Van Dijk, R. Garcia Alia, O. Hans, A. Huschauer, D. Kuchler, A. Lasheen, K. Li, E. Mahner, D. Mirarchi, G. Papotti, B. Rodriguez, R. Scrivens, F. Velotti, E. Waagaard

Acknowledgements: S. Albright, D. Almeida, M.E. Angoletta, F. Asvesta, P. Arrutia, P. Baudrenghien, D. Bodart, B. Bradu, S. Burger, F. Carlier, J. Cenede, D. Cotte, R. Denz, M. Dolenc, S. Fartoukh, A. Ferrero, A. Frassier, J.F Gruber, G. Hagmann, P. Hermes, M. Hostettler, S. Jensen, V. Kain, I. Karpov, G. Khatri, A. Lechner, E. Matheson, O. Marqversen, B. Mikulec, M. Monikowska, S. Morales Vigo, C. Mutin, S. Paiva, K. Paraschou, T. Persson, G. Piccinini, A. Rey, S. Redaelli, G. Rumolo, B. Salvachua, M. Schenk, M. Solfaroli, F. Soubelet, A. Spierer, G. Sterbini, V. Toivanen, A. Topaloudis, N. Triantafyllou, G. Tranquille, D. Quartullo, D. Valuch, R. Wegner, J. Wenninger, C. Wetton, M. Widorski, PS, SPS and LHC OP teams

Joint Accelerator Performance Workshop, 11 December 2024

Contents

Overview 2024

- Injectors performance (ion source, Linac3, LEIR, PS, SPS)
- LHC performance & crystals stability
- Fixed-target performance in East Area and North Area

The future

- LHC oxygen run in 2025
- Future ions after LS3

Overview 2024

11 December 2024

Maciej Slupecki

Linac3 Ion Source

Various issues with both microwave generators (operational and spare)

- Loss of 2 weeks of BC → recovered at LEIR thanks to contingency beam conditioning time
- Actions undertaken
 - New consolidation request
 - Work order with the manufacturer is active
 → faster response to issues
 - Many component spares ordered

Source 'dips' in 2024

- More variation of the beam intensity
 - \rightarrow dips were harder to spot
 - \rightarrow also less frequent
- Proposed mitigation
 - \rightarrow power down an empty oven
 - → not always practical (not clear when an oven is empty, esp. during operations)

Maciej Slupecki

Linac3

Above-LIU mean beam current out of Linac3

Configuration in 2024

- 50% longer pulse length
 - 200 μs → 300 μs
 - Shorter stripper foil lifetime

Development of ML optimizer

- Intended as operational aid for source tuning
- Good progress, promissing results
 → not yet ready for operations

Linac3 Status of the Accelerator Model

Source beam extraction

- Simulated with IBSIMu
 - 3D geometry
 - 3D magnetic field from Opera (solenoids & hexapole)
- Measured charge-store and
 Large error bars in the extracted beam specs Upgrade properties → due to lack of instrumentation at source extraction

ITL-to-ITF Linac3 beam dynamics

- Modelled in PATH/Travel
 - Using as input the beam distribution reconstructed from profile measurements after the ITL spectrometer
 - Good agreement between simulation results and beam measurements (transmission, beam transverse profiles)

V. Toivanen, 2015 0.04 y (m) -0.02 -0.04 -0.06 0.1 03 04 0.5 02

LEIR: Intensity

Intensity gain

- Adjusted injection system to benefit from longer pulses out of Linac3
- Cleaned orbit bumps
- Improved ejection and transfer efficiency to PS
 - Overestimated EE, ETP
 → max transmission at 104%
- Corrected ETL.BHN10 function, preventing degradation of the next cycle
- Extensive use of optimizers
 → Injection
 - \rightarrow RF-capture

LEIR: Emittance & Cooling

Mainly longitudinal cooling in 2024

- Minimal transverse cooling visible in IPM data •
- Issues with IPM emittance measurement •
 - Burnout of central sensor parts
 - Saturation of the whole sensor at injection time ٠ \rightarrow Suspected of affecting the data later in the cycle

Burnout zone

11 December 2024

Maciej Slupecki

Above-LIU performance

- Issue with ring BCT
 - Systematic baseline offset due to low beam intensity (compared to protons)
- Possible emittance blow-up along the cycle
 → To be verified
 - BGI not operational
 - Wire scanners
 - \rightarrow issues measuring vertical emittance at injection

SPS - Flat-bottom Transmission Improvement and Ejection Intensity

- ~20% gain with 50-Hz compensation
- Optimizer available to OP from CCM

Above-LIU extracted intensity out of SPS

SPS - Bunch Length, Tune and Emittance

Bunch length at SPS extraction

- Not reaching LIU \rightarrow missing 15%
 - LHC can still inject without bunch rotation

SPS working point

• Balance between transverse emittance and intensity

Transmission and Emittance

- Bigger transverse emittances across the injector complex
 - \rightarrow new LEIR configuration
 - \rightarrow much higher intensities

- Better LEIR-to-PS transfer than in previous years
- Slightly worse transmission from PS to SPS than in 2023
- More intensity losses along the SPS cycle
 - \rightarrow Degraded slip stacking \rightarrow shorter bunch length
 - \rightarrow Tail scraping \rightarrow smaller emittance
 - \rightarrow Price to pay for >30% higher per-bunch intensity

Summary of Issues at the LHC

In 2024

SB

43%

Other

OP

33%

Fault

24%

In 2023

SB: 33%

Fault: 33%

Reasons for physics fills dumps in 2024

Three new-type issues observed in 2024
 → multiple quench heaters firing following
 → fast power aborts in dipoles and quadrupoles

- Planned mitigation → LMC #499 https://indico.cern.ch/event/1484357/#3-quench-events-during-the-ion
 - Remove 140 DQQBSv2 boards,
 - Remove Y-capacitors from the boards
 - Reinstall the boards after testing
- Power converter trips

Remaining issues

New QDS issues in 2024

- 10 Hz losses
- High losses towards end of ramp
- Losses at start of ramp
 - Increased BLM thersholds
- 2023-type QDS issues
- RF issues

Crystal Channeling Stability

Importance of crystals alignment w.r.t. beam

• O(µrad) at top energy

Observation of drifts of crystals orientation in 2023

 Degraded cleaning performance when channeling less efficient

Mitigations in 2024

- Automatic optimizations at tunable intervals
- Coverage for the whole cycle
 - Real-time trims during the ramp

Observations in 2024

- Drifts of tens of µrad observed within fills
- Unknown root cause → studies ongoing
 - Why vertical device is more stable than horizontal?
- Thanks to the optimizer maintained orientation efficiency (most of the time)

R. Bruce

D Mirarchi

LHC Performance

Parameter	2023	HL-LHC	2024
Avg injected intensity [10 ⁸ Pb/b]	-	2.0	2.6
Transm.: inj. \rightarrow stable beams	84%	-	88%
Avg intensity at start of collissions [10 ⁸ Pb/bunch]	1.6	1.8	2.3
Maximum stored beam energy at start of collisions	17.3	20.5	26.9
Luminosity production rate* [nb ⁻¹ / day]	-	-	IP1/2/5: 0.144 IP8: 0.036
Emittance at injection [mm × mrad]	-	~1.5	2.1-2.4

- Achieved levelling time of ~2h in ALICE
- Luminosity production in 2024 surpassed HL-LHC projections (and 2023 by far)

- On average: 2.6 × 10⁸ Pb/bunch injected in LHC from SPS
 → 30% above LIU
- Larger-than-LIU emittance
 → still net gain due to high intensity

Integrated Luminosity

Luminosity collected in Run3 up to 2024 vs. targets:

- $1 \rightarrow 2 \text{ nb}^{-1}$ in LHCb
- 6.5 nb⁻¹ elsewhere
- ATLAS:3.73 nb⁻¹ (57%)CMS:3.93 nb⁻¹ (60%)LHCb:0.75 nb⁻¹ (75% → 37%)°ALICE:4.14 nb⁻¹ (64%)
- At Chamonix 2024: experiments' targets were calculated ambitiously assuming sustaining the peak daily production in 2023 over the full run
- Targets reached in spite of 1 day less, due to longer pp reference run, thanks to:
 - Mitigations of the 2023 limitations in the LHC
 - Substantially higher intensity delivered by the injectors

Delivered Luminosity 2024

North Area Performance

High Energy Beam (150 AGeV/c)

- Primary beam Intensity and spot size
 → very good
- Challenging steering in T2 & T4
 - **ML** optimizer **in preparation** for T2
- Instrumentation in the secondary lines had to be commissioned during physics
 - Request more beam commissioning time next year
 - Issues at target and downstream

H2/H4

- Autopilot for controlling H2/H4 symmetry unusable due to low BSP signal
 → beam drift
 - Beam **position** and **intensity fluctuations**
 → need investigation

Low Energy Beam (13.5 AGeV/c)

- Better intensity and reduced beam size
 - Thanks to the new low-energy TT20 optics
 - Transmission improved by a factor 4-5
 - Beam size reduced from ~cm to 1-2 mm at T2 & T4
 → still too large
 → inefficiency of secondary production
- Main challenges at low energy

 → large beams and sensitivity to noise
 - → inaccurate measurement of beam size

H8

- Identified intensity limit (with collimators fully open)
 - Observed 1.1×10^7 ions \rightarrow Expected 25 times more
 - → Optics development needed

R. Garcia Alia

East Area - HEARTS

Location

IRRAD @ EA T8 ٠

Aim

Radiation testing of electronics for space applications

Beams out of PS

- Requirements:
 - \rightarrow large beam size $(7.5 \times 7.5 \text{ cm}^2)$
 - \rightarrow good homogeneity (±10%)
- Energies •
 - → 1 GeV/u
 - → 0.5 GeV/u
 - Local use of PMMA degraders to tune the beam energy further

Performance

- Beam availability: 90%
 - Main downtime (12h) due to unscheduled Linac3 source oven refill

HEARTS

- The affected users managed to complete their hours afterwards
- Duration: •
 - 12 days, ~150 h of beam time \rightarrow 100% of the original plan
- Users
 - 10 user teams \rightarrow 4 scientific
 - \rightarrow 6 industrial

The Future

11 December 2024

Maciej Slupecki

Magnesium Beam Test up to PS For NA61++/SHINE - Issues and mitigations

Oxygen Run in 2025

Future lons WG proposal → Neon test in 2025

Motivation:

If Ion Complex Upgrade delayed & no 2nd source available after LS3

- Mitigation: deliver two different ions with the same A/Q (beam rigidity) across the complex in a short time
 - Species: ${}^{16}O^{8+} \rightarrow {}^{20}Ne^{10+} \rightarrow$ Same A/Q and motivated physics case

Goals of the test:

https://arxiv.org/pdf/2402.05995 https://arxiv.org/pdf/2405.20210

- 1. Assess switching time of ~hours: $O \rightarrow Ne$
- 2. Assess oxygen source contamination & purging speed
- 3. Confirm same settings across the complex are transparent for both ions
- 4. Beam dynamics limitation studies across the complex with a new ion \rightarrow Ion Injector Model benchmark
- 5. Eventually, send the beam to LHC for Ne-Ne collisions

Timeline:

- To check 1 & 2 → start the source 1 week in advance (as proposed by the LN3 team)
- After the LHC oxygen run, perform a 24 hours test to bring the beams up to SPS
 - Best-effort beam to LHC directly after oxygen run, with collisions if the experiments are interested

Future Ions - Identified Limitations

Concurrent feasibility studies within a LHC and NA physics year is challenging

- One ion source for development and operation
 - Limited time for studies \rightarrow small number of issues can be addressed experimentally
 - New ions at the source can potentially contaminate the source \rightarrow Pb may be compromised
 - Limited beam instrumentation \rightarrow trial and error \grave{e} time consuming

If NA61++ Run 4 program approved

- \rightarrow Ion complex fully committed to operation
- \rightarrow No development for post-LS4 LHC ions possible
- \rightarrow No light ions for LHC in Run 4

LHC luminosity could be improved by further increasing intensity

 \rightarrow Push boundaries for space charge and IBS in injectors, explore shorter bunch spacing than 50 ns

Current ion complex cannot fulfil HEARTS++ request

 \rightarrow 15' switching time between 4 different species

Ion Complex Upgrade (ICU) Proposal

ICU DELIVERABLES

- 1. New Linac3 source and BI out of both sources
- 2. Connection of ion sources and BI downstream
- 3. Alternative stripping scenario
- 4.25 ns bunch spacing at LHC
- 5. Consolidation

Ambitious timeline

- Aiming at D1,D2 & D5 MTP25 approval
- CDR in preparation \rightarrow 2026
- Implementation in phases \rightarrow flexibility depending on available resources within the groups \rightarrow First installation at the end of LS3
 - \rightarrow Project completion in LS4

Summary and Outlook

Issues from 2023

Poor intensity and stability at the injectors
 → mitigated

 \rightarrow improved steering, 50-Hz @ SPS

- LHC
 - QDS

 → Mostly mitigated (new-type issue)
 - Beam losses
 → All mitigated (10 Hz, start/end of ramp)
 - Crystals stability
 - \rightarrow Mitigated, but not understood
 - ALICE background
 → Acceptably mitigated

2024 new-filling scheme MD

• Cancelled due to QPS issues

Observations in 2024 → to be followed up

- High emittance out of injectors
- New-type QDS events at the LHC
- NA: BI accuracy, optics (further beam size reduction)
- Long LHC filling time

 → intensity losses → how to improve?

Future

2025: Oxygen run & neon MD proposal

LS3: ¹⁰B and ²⁴Mg test at Linac3

Ion Complex Upgrade (ICU)

 Proposal in preparation to mitigate ion complex limitations for future ion requests

Altogether 2024 was a very good year for ions

Injectors performed well above LIU (except emittance) LHC is already reaching above-HL performance Luminosity production exceeded by far projections from Chamonix 24 Fixed-target experiments and users were happy

Thanks to dedication and hard work of all the involved teams

Let's break even more (positive) records next year!

home.cern

ALICE Background

In 2023 observed strong background at IR2 → severe impact on ALICE data taking

- Main source: ²⁰⁷Pb⁸²⁺ from IR7 hitting IR2 tertiary collimator
- Applied mitigation: on_disp knob
 → Some residual background remained

Background in 2024

- Continued using **on_disp** knob
- Physics background as in 2023 after mitigation

 → Residual background still present → not a showstopper
 → Unknown source
- Performed end-of-fill tests to identify the source of the residual background
 - Background still present after dumping one beam only, regardless of beam direction
- Studies ongoing
 - Need to understand the source before devising mitigation measures

Busy violations in 15 out of 1M readout frames at interaction rate of 47 kHz.

Linac3 source oven 2 blockage

Inspection after oven refill on 29th Nov

- Identified oven 2 nozzle blocked by the silvery surface of Pb
- Later measurements show that only 437 mg were used out of 1388 mg installed in oven 2

Linac3 source oven refill scheduling

Do we need to revise the refill planning strategy?

- Scheduling oven refills assuming the second oven would fail seems excessive
- Around 30 days of operation per two-oven-fill is the expected minimum
 - \rightarrow But never tested explicitly (we always anticipate the refill)
 - For runs longer than 30 days we either have to:
 - Schedule the refill
 - → Downtime at the chosen time (working hours, no short-term users affected)
 - Run until the intensity fades away (ovens empty/malfunctioning)
 - \rightarrow Chance to avoid unnecessary refill and downtime altogether
 - \rightarrow Risk of downtime in the most inconvenient moment

LEIR cooling efficiency for light ions

11 December 2024

P. Kruyt

S Ŀ Ū S S rans U تر 0

Overview of 2024 Ion Run at the LHC

Excellent physics production over extended periods! Some downtime and premature dumps.

Summary of Issues at the LHC

The following beam losses were fully mitigated (none observed in 2024)

- 10 Hz losses
 - \rightarrow Delayed opening cryo valve
 - \rightarrow More open collimators
- High losses towards end of ramp
 - \rightarrow More open colimators
 - → Better orbit correction
 - \rightarrow Lifting out part of squeeze
- Losses at start of ramp
 → Increased BLM thersholds

Faults and downtime

- Old QDS issues from 2023
 - Mitigated by replacing ~ 200 boards with radiation-hard versions
- New QDS issues in 2024
 - Three new-type issues observed in 2024

 → multiple quench heaters firing following
 → fast power aborts in dipoles and quadrupoles
 - Planned mitigation \rightarrow LMC #499 https://indico.cern.ch/event/1484357/#3-quench-events-durin g-the-ion
 - Remove 140 DQQBSv2 boards, remove Y-capacitors, reinstall the boards
- RF issues
 - Mitigated by gradually decreasing voltage from 16 MV down to 12 MV
 → increase of availability
- Power converter trips

11 December 2024

Provide the second seco

LHC Performance

11 December 2024

LHC integrated luminosity

11 December 2024

Maciej Slupecki

11 December 2024

LIU beam parameters

(https://edms.cern.ch/document/1420286/2)

	$N_{ions}/bunch$	$\epsilon_{x,y}$ (µm)	Bunches	Bunch	$N_{ions}/bunch$	$\epsilon_{x,y}$ (µm)	Bunches	Bunch		
LEIR	Before F	Before RF capture (54 ⁺ , E _{bin} =0.0042 GeV/u)			$Extraction (54+, E_{tita}=0.0722 \text{ GeV/u})$					
Achieved (2015)	15.5	0.4, 0.4	coasting beam		6.0		2	354		
LIU-ions (TDR)	18.6	0.4, 0.4			7.4		2	354		
Achieved (2016)	19.1	0.4, 0.4			8.1		2	354		
LIU-ions (2016)/HL-LHC	19.1	0.4, 0.4			8.1		2	354		
PS	Injection (54 ⁺ , E _{kin} =0.0722 GeV/u)			Extraction (54 ⁺ , E _{kin} =5.9 GeV/u)						
Achieved (2015)	5.5		2	354	5.1	0.9, 0.8	2	100		
LIU-ions (TDR)	6.8		2	354	3.1	1.0	4	3x100		
Achieved (2016)	8.1		2	354	3.8	1.0	4	3x100		
LIU-ions (2016)/HL-LHC	8.1		2	354	3.8	1.0	4	3x100		
SPS	In	Injection (82 ⁺ , E _{kin} =5.9 GeV/u)			Extraction (82 ⁺ , E _{kin} =176.4 GeV/u)					
Achieved (2015)	4.3	1.0, 0.9	2	100	2.2	1.5	24	11x(100+150)+100		
LIU-ions (TDR)	2.6	1.0	4	3x100	1.7	1.3	48	5x(7x50+100)+7x50		
Achieved (2016)	3.5	1.0	4	3x100	2.2	1.5	28	6x(100+150)+100		
LIU-ions (2016)/HL-LHC	3.5	1.0	4	3x100	2.0	1.5	56	6x(7x50+100)+7x50		
LHC	Injection (82 ⁺ , E _{kin} =176.4 GeV/u) MKI gap (ns		MKI gap (ns)	Abort gap (ns)		Total number of bunches				
Achieved (2015)	2.2	1.5	24	900	3300		518			
LIU-ions (TDR)	1.7	1.3	48	900	3300		1152			
Achieved (2016)	2.2*	1.5	28	900	3300		548			
LIU-ions (2016)/HL-LHC	1.9*	1.5	56	800	2900		1256			

* these bunch intensity values refer to the start of the LHC ramp.

