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Overview
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Online Data Processing
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Many different use cases:

• Processing & concentration of operational signals

• Wire Scanner analysis 

• Diamond BLMs

• Automatic Fault Recording  (see talk by A. Asko)

• SISv2 complex logic

• Automated multi-bunch tomography (see. talk by A. Beeckman)

• etc... 

UCAP – the primary choice for online
data processing
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Common pattern: Data aggregation → Process → Publish + Store [Notify]
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UCAP overview
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10 bare-metal machines (cs-ccr-[1:10])

2 machines with GPU (cs-513-ml002, cs-ccr-ml004)

Node count: 203 nodes : 95 PRO, 102 TEST, 6 TESTBED
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Recent developments driven by EPA & community

● Combine online and offline data → integration with NXCALS

● Simplifying debugging → logs are now stored in OpenSearch

● Still room for improvement for Python (debugging from IDE)

● LSA Trim, AFT, Email Actors, SET support, and many more.

Planned improvements

● Automatic device declaration in CCS 

● No more manual declarations in the CCDE web interface

● ucap-persistence to keep Converters state when UCAP node is rebooted

● Support for event recording & replaying

● Streamline configuration with automated JSON generation

Limitations:

• UCAP is not a virtual device framework, i.e. unsuitable to implement e.g. Orchestration server →We need something else

• In UCAP all data is expressed in JAPC-style, however, operating on domain-specific types would be more convenient

UCAP extensions and improvements
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EPA WP8 – towards equipment automation aka “smart and agile equipment”

A framework that allows equipment experts to design automation for their machinery

New Data Processing Requirements from EPA
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Courtesy to F. Velotti and K. Papastergiou (JAP23)

=> A more powerful and flexible analysis 

framework is needed

https://indico.cern.ch/event/1337597/contributions/5634979/attachments/2767406/4820776/Performance_monitoring.pdf
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Offline Data Processing
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● Several different implementations exist with similar 
functionality

● Offline Analysis Framework – regular analysis of instrument 
data for tracking performance, aging, etc. (SY-BI)

● Beam Performance Tracking - operation performance of the 
different accelerators (BE-OP, BE-ABP)

● Signal Monitoring – hardware commissioning, powering 
tests, circuit performance, quench analysis (TE-MPE)

● Data Analysis as a Service – water consumption, Cryo
instrumentation and operation (BE-ICS, TE-CRG)

● Several other systems from ABT, STI, TE-VSC

● Conceptually similar but with different implementation
● mainly written in Python, different frameworks chosen 

● often operate on ad-hoc infrastructure that might not always 
be reliable enough

● Endorsed by the CTTB => Converge and provide a 
common solution

Offline Data Processing Overview
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Common pattern: Query data from NXCALS → process → publish + store + visualize

https://indico.cern.ch/event/1222574/
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• Ideally all data that needs to be analysed is stored in NXCALS 

• Data from devices ✓ (Data can be logged on-demand, e.g. only during an MD)

• LSA settings ✓ (no need to use pjLSA)

• Optics and other information ➔ to be addressed

• Analysis scripts 

• Are written in any supported language (e.g., Python, Java)

• Triggered by a fixed schedule (cron) or an external event (e.g. End-of-Fill)

• Results can be stored in NXCALS, published (CMW, email etc)

• You (users) take care of:

• Developing the analysis scripts and defining its configuration (e.g., trigger, result publication etc.)

• We take care of all the rest

• Infrastructure, monitoring, upgrades

• APIs, integration between services, deployments, triggers ...

Vision/ideas for a unified offline solution
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Bringing offline & online 
together
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• Having distinct solutions for online and offline is inefficient

• Having the same (e.g., SWAN?) algorithm used for online and offline could be very useful

• => These two approaches are complementary and should be combined.

Challenges to achieve this: Finding a common way of expressing an algorithm for online and 
offline == common tools, data structures and APIs

Online and offline – why and how to merge?

12



Marcin SobieszekJAP Workshop, 10-12 December 2024

Bringing online & offline together
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Data Processing Platform
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One tool for Online and Offline Analysis adopting the UCAP philosophy: focus on solving 

your problems and performing your analysis – we’ll take care of the rest
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● NXCALS: More sophisticated logging-on-demand needed for MD

• Support for predefined time windows (e.g., for the next 8 hours)

• Nice to have: conditional logging triggered by external events (e.g., when there’s a beam)

● NXCALS: Data post-processing, down sampling, repartitioning

● NXCALS: Simplified API, UTC → local time, pandas for seamless Analysis

• Help people use Spark efficiently

● NXCALS: Even more data into NXCALS (Optics + Settings + Meas) for even more seamless Analysis

● UCAP, NXCALS: Even more support for Python

• “if Python was not supported we wouldn’t use UCAP at all”

• “Do we actually need Java in Client Facing API?”

● MISC: Controls orchestration service strategy - clarify needs and roles between DPP and Sequencer 2.0 (WP5)

● MISC/DPP: EventBuilder as a specialized Python library or a service

● MISC: API for cross-accelerator correlation (e.g. to follow an LHC bunch back to the PS cycle that produced it)

Miscellaneous
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UCAP

● Implementation of ucap-persistence

● Integration with Controls Configuration (CCS)

● Simplify configuration, hide JSON

DPP (offline)

● Technology research
● Leveraging a rich Cloud-native (Kubernetes) landscape

● Data Streaming solutions

● PoC Delivery: targeted for Q3 2025 including:
● Two offline use cases from SigMon and OAF

● EPA dashboards

MISC

● NXCALS/CCDB: Extend logging-on-demand

● More and better Python APIs (pyJapc → pyDA, …)

Plans for 2025
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● There is a clear and growing need to provide a Data Processing Platform as a Service

● UCAP is successful and widely adopted for online use case

● Multiple group in ATS have also implemented offline solutions their own way

● DPP is aimed to address both

● It is endorsed by CTTB

● Recruitment is ongoing

● It factors in additional, emerging requirements, e.g., from EPA Work Packages

● It brings more data in NXCALS, better Python support, better APIs

● A Proof-of-Concept will be done in 2025 and we’re looking forward to reporting 

back here in 1 year ☺

Summary
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Extra Slides
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• User-Friendly Service Submission
• Users can submit their code without worrying about the infra

• Resources are scaled as needed

• Declarative usage: simplified interaction with existing systems (e.g., UCAP)

• Beginner friendly: prepare a simple analysis in less than 1 hour
• Create a skeleton from a template → develop & test & run locally → deploy

• Powered by a Kubernetes/Knative service, aka Function as a Service (FaaS)
• Knative’s Serving, Eventing, Func, Akka

• Plus: more powerful and convenient Python libraries to work with NXCALS 
• Pandas-on-Spark to run analysis in the NXCALS cluster; 

• API for cross-accelerator correlation (e.g. to follow an LHC bunch back to the PS cycle that 

produced it)

• Local time by default (not UTC)

DPP - Ideas for the implementation
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• Having distinct solutions for online and offline is inefficient

• Online use case: 
• Scenario: A UCAP transformation processes raw data from devices and publishes the results to 

NXCALS

• Advantage: real-time availability of data e.g. for GUIs

• Downside: the UCAP device must run continuously, else there are data losses 

• Corresponding offline use case as an alternative: 
• Scenario: All raw data from devices is stored in NXCALS, and the same algorithm as above is 

executed in offline mode

• Advantage: transformation can be run at anytime. If the algorithm changes, the whole year can be re-
calculated

• Downside: data cannot be displayed in real-time.

• => The two are complementary and should be combined.

Challenges to achieve this: Finding a common way of expressing an algorithm for online 
and offline == common tools, data structures and APIs

Online and offline – why and how to merge?
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