
Data and processing resources
for analysis

Marcin Sobieszek BE/CSS
EPA WP9

with input from
G. Iadarola, G. Sterbini, R. De Maria, F. Asvesta, A. Lasheen, M.

Berges, JC. Garnier, V. Kain, A. Huschauer, M. Schenk, M.
Hostettler, A. Calia, G. Trad, V. Baggiolini, C. Roderick and others

1

Marcin SobieszekJAP Workshop, 10-12 December 2024

Overview

2

Marcin SobieszekJAP Workshop, 10-12 December 2024 3

Online Data Processing

Marcin SobieszekJAP Workshop, 10-12 December 2024

Many different use cases:

• Processing & concentration of operational signals

• Wire Scanner analysis

• Diamond BLMs

• Automatic Fault Recording (see talk by A. Asko)

• SISv2 complex logic

• Automated multi-bunch tomography (see. talk by A. Beeckman)

• etc...

UCAP – the primary choice for online
data processing

4

Common pattern: Data aggregation → Process → Publish + Store [Notify]

Marcin SobieszekJAP Workshop, 10-12 December 2024

UCAP overview

5

10 bare-metal machines (cs-ccr-[1:10])

2 machines with GPU (cs-513-ml002, cs-ccr-ml004)

Node count: 203 nodes : 95 PRO, 102 TEST, 6 TESTBED

Marcin SobieszekJAP Workshop, 10-12 December 2024

Recent developments driven by EPA & community

● Combine online and offline data → integration with NXCALS

● Simplifying debugging → logs are now stored in OpenSearch

● Still room for improvement for Python (debugging from IDE)

● LSA Trim, AFT, Email Actors, SET support, and many more.

Planned improvements

● Automatic device declaration in CCS

● No more manual declarations in the CCDE web interface

● ucap-persistence to keep Converters state when UCAP node is rebooted

● Support for event recording & replaying

● Streamline configuration with automated JSON generation

Limitations:

• UCAP is not a virtual device framework, i.e. unsuitable to implement e.g. Orchestration server →We need something else

• In UCAP all data is expressed in JAPC-style, however, operating on domain-specific types would be more convenient

UCAP extensions and improvements

6

Marcin SobieszekJAP Workshop, 10-12 December 2024

EPA WP8 – towards equipment automation aka “smart and agile equipment”

A framework that allows equipment experts to design automation for their machinery

New Data Processing Requirements from EPA

7

Courtesy to F. Velotti and K. Papastergiou (JAP23)

=> A more powerful and flexible analysis

framework is needed

https://indico.cern.ch/event/1337597/contributions/5634979/attachments/2767406/4820776/Performance_monitoring.pdf

Marcin SobieszekJAP Workshop, 10-12 December 2024 8

Offline Data Processing

Marcin SobieszekJAP Workshop, 10-12 December 2024

● Several different implementations exist with similar
functionality

● Offline Analysis Framework – regular analysis of instrument
data for tracking performance, aging, etc. (SY-BI)

● Beam Performance Tracking - operation performance of the
different accelerators (BE-OP, BE-ABP)

● Signal Monitoring – hardware commissioning, powering
tests, circuit performance, quench analysis (TE-MPE)

● Data Analysis as a Service – water consumption, Cryo
instrumentation and operation (BE-ICS, TE-CRG)

● Several other systems from ABT, STI, TE-VSC

● Conceptually similar but with different implementation
● mainly written in Python, different frameworks chosen

● often operate on ad-hoc infrastructure that might not always
be reliable enough

● Endorsed by the CTTB => Converge and provide a
common solution

Offline Data Processing Overview

9

Common pattern: Query data from NXCALS → process → publish + store + visualize

https://indico.cern.ch/event/1222574/

Marcin SobieszekJAP Workshop, 10-12 December 2024

• Ideally all data that needs to be analysed is stored in NXCALS

• Data from devices ✓ (Data can be logged on-demand, e.g. only during an MD)

• LSA settings ✓ (no need to use pjLSA)

• Optics and other information ➔ to be addressed

• Analysis scripts

• Are written in any supported language (e.g., Python, Java)

• Triggered by a fixed schedule (cron) or an external event (e.g. End-of-Fill)

• Results can be stored in NXCALS, published (CMW, email etc)

• You (users) take care of:

• Developing the analysis scripts and defining its configuration (e.g., trigger, result publication etc.)

• We take care of all the rest

• Infrastructure, monitoring, upgrades

• APIs, integration between services, deployments, triggers ...

Vision/ideas for a unified offline solution

10

Marcin SobieszekJAP Workshop, 10-12 December 2024 11

Bringing offline & online
together

Marcin SobieszekJAP Workshop, 10-12 December 2024

• Having distinct solutions for online and offline is inefficient

• Having the same (e.g., SWAN?) algorithm used for online and offline could be very useful

• => These two approaches are complementary and should be combined.

Challenges to achieve this: Finding a common way of expressing an algorithm for online and
offline == common tools, data structures and APIs

Online and offline – why and how to merge?

12

Marcin SobieszekJAP Workshop, 10-12 December 2024

Bringing online & offline together

13

Marcin SobieszekJAP Workshop, 10-12 December 2024

Data Processing Platform

14

One tool for Online and Offline Analysis adopting the UCAP philosophy: focus on solving

your problems and performing your analysis – we’ll take care of the rest

Marcin SobieszekJAP Workshop, 10-12 December 2024

● NXCALS: More sophisticated logging-on-demand needed for MD

• Support for predefined time windows (e.g., for the next 8 hours)

• Nice to have: conditional logging triggered by external events (e.g., when there’s a beam)

● NXCALS: Data post-processing, down sampling, repartitioning

● NXCALS: Simplified API, UTC → local time, pandas for seamless Analysis

• Help people use Spark efficiently

● NXCALS: Even more data into NXCALS (Optics + Settings + Meas) for even more seamless Analysis

● UCAP, NXCALS: Even more support for Python

• “if Python was not supported we wouldn’t use UCAP at all”

• “Do we actually need Java in Client Facing API?”

● MISC: Controls orchestration service strategy - clarify needs and roles between DPP and Sequencer 2.0 (WP5)

● MISC/DPP: EventBuilder as a specialized Python library or a service

● MISC: API for cross-accelerator correlation (e.g. to follow an LHC bunch back to the PS cycle that produced it)

Miscellaneous

15

Marcin SobieszekJAP Workshop, 10-12 December 2024

UCAP

● Implementation of ucap-persistence

● Integration with Controls Configuration (CCS)

● Simplify configuration, hide JSON

DPP (offline)

● Technology research
● Leveraging a rich Cloud-native (Kubernetes) landscape

● Data Streaming solutions

● PoC Delivery: targeted for Q3 2025 including:
● Two offline use cases from SigMon and OAF

● EPA dashboards

MISC

● NXCALS/CCDB: Extend logging-on-demand

● More and better Python APIs (pyJapc → pyDA, …)

Plans for 2025

16

Marcin SobieszekJAP Workshop, 10-12 December 2024

● There is a clear and growing need to provide a Data Processing Platform as a Service

● UCAP is successful and widely adopted for online use case

● Multiple group in ATS have also implemented offline solutions their own way

● DPP is aimed to address both

● It is endorsed by CTTB

● Recruitment is ongoing

● It factors in additional, emerging requirements, e.g., from EPA Work Packages

● It brings more data in NXCALS, better Python support, better APIs

● A Proof-of-Concept will be done in 2025 and we’re looking forward to reporting

back here in 1 year ☺

Summary

17

Marcin SobieszekJAP Workshop, 10-12 December 2024 18

Extra Slides

Marcin SobieszekJAP Workshop, 10-12 December 2024

• User-Friendly Service Submission
• Users can submit their code without worrying about the infra

• Resources are scaled as needed

• Declarative usage: simplified interaction with existing systems (e.g., UCAP)

• Beginner friendly: prepare a simple analysis in less than 1 hour
• Create a skeleton from a template → develop & test & run locally → deploy

• Powered by a Kubernetes/Knative service, aka Function as a Service (FaaS)
• Knative’s Serving, Eventing, Func, Akka

• Plus: more powerful and convenient Python libraries to work with NXCALS
• Pandas-on-Spark to run analysis in the NXCALS cluster;

• API for cross-accelerator correlation (e.g. to follow an LHC bunch back to the PS cycle that

produced it)

• Local time by default (not UTC)

DPP - Ideas for the implementation

19

Marcin SobieszekJAP Workshop, 10-12 December 2024

• Having distinct solutions for online and offline is inefficient

• Online use case:
• Scenario: A UCAP transformation processes raw data from devices and publishes the results to

NXCALS

• Advantage: real-time availability of data e.g. for GUIs

• Downside: the UCAP device must run continuously, else there are data losses

• Corresponding offline use case as an alternative:
• Scenario: All raw data from devices is stored in NXCALS, and the same algorithm as above is

executed in offline mode

• Advantage: transformation can be run at anytime. If the algorithm changes, the whole year can be re-
calculated

• Downside: data cannot be displayed in real-time.

• => The two are complementary and should be combined.

Challenges to achieve this: Finding a common way of expressing an algorithm for online
and offline == common tools, data structures and APIs

Online and offline – why and how to merge?

20

