
Surrogate models 
F.M. Velotti, F. Huhn, V. Baggiolini, R. Gorbonosov, 

V. Kain, B. Rodriguez Mateos, M. Schenk, M. Sobieszek



Outline

1. What are surrogate models?
2. Cherry picked CERN applications
3. Integration in the control system 
4. Conclusions



➔ Surrogate models (SM) are 
simplified mathematical models 
that approximate complex, 
computationally expensive 
simulations - they can also include 
directly data from the real system

TL;DR: What are surrogate models?

Complex 
lengthy 

simulations

O(min, hours, days)



➔ Surrogate models (SM) are 
simplified mathematical models 
that approximate complex, 
computationally expensive 
simulations - they can also include 
directly data from the real system

TL;DR: What are surrogate models?

Complex 
lengthy 

simulations

Simple 
fast 

surrogate

O(us, ms)O(min, hours, days)



➔ Surrogate models (SM) are 
simplified mathematical models 
that approximate complex, 
computationally expensive 
simulations - they can also include 
directly data from the real system

➔ They are commonly used in 
optimization, sensitivity analysis, 
and uncertainty quantification to 
reduce computation time

TL;DR: What are surrogate models?

Complex 
lengthy 

simulations

Simple 
fast 

surrogate

O(us, ms)O(min, hours, days)



Why to use surrogate models 

Main benefits:

➔ Enabling Large-Scale Optimization and 
Sensitivity Analysis

◆ Make feasible optimization of simulations that take long 
to run 

Order of magnitudes



Why to use surrogate models 

Main benefits:

➔ Enabling Large-Scale Optimization and 
Sensitivity Analysis

◆ Make feasible optimization of simulations that take long 
to run 

➔ Facilitating Real-Time Decision Making and 
Control

◆ Enable to have a real-time controller on arbitrary 
complex response 

◆ Possibility to study real system behavior to controllers 
and optimizers 

Order of magnitudes



Why to use surrogate models 

Main benefits:

➔ Enabling Large-Scale Optimization and 
Sensitivity Analysis

◆ Make feasible optimization of simulations that take long 
to run 

➔ Facilitating Real-Time Decision Making and 
Control

◆ Enable to have a real-time controller on arbitrary 
complex response 

◆ Possibility to study real system behavior to controllers 
and optimizers 

➔ Improved Interpretability and Understanding of 
Complex Systems

◆ Enable the exploration of system parameter relationship 
and correlations 

Order of magnitudes



Main benefits:

➔ Enabling Large-Scale Optimization and 
Sensitivity Analysis

◆ Make feasible optimization of simulations that take long 
to run 

➔ Facilitating Real-Time Decision Making and 
Control

◆ Enable to have a real-time controller on arbitrary 
complex response 

◆ Possibility to study real system behavior to controllers 
and optimizers 

➔ Improved Interpretability and Understanding of 
Complex Systems

◆ Enable the exploration of system parameter relationship 
and correlations 

➔ Enhanced Robustness and Simplicity
◆ Smooth functions to reduce sensitivity to noise 

Why to use surrogate models 

Order of magnitudes



How to make a surrogate model



1D example - crystal shadowing 

Input
Crystal angle Output

Losses ZS

➔ We have a simulation model (e.g. crystal shadowing simulations) that depends on a single 
parameter (e.g. angle)

◆ Each simulation point takes some time O(10’)



How to make a surrogate model

➔ Aim: use the minimum 
number of samples to 
cover reasonably the 
space to explore

➔ Rather old concept 
(Fisher in 1926 [1])

Input
Crystal angle

np.linspace(-175, 175, 50)

https://link.springer.com/content/pdf/10.1007/978-1-4612-4380-9_8.pdf


How to make a surrogate model

[1]

➔ Aim: use the minimum 
number of samples to 
cover reasonably the 
space to explore

➔ Rather old concept 
(Fisher in 1926 [1])

https://arxiv.org/pdf/2202.06416
https://link.springer.com/content/pdf/10.1007/978-1-4612-4380-9_8.pdf


How to make a surrogate model

[1]

➔ Aim: use the minimum 
number of samples to 
cover reasonably the 
space to explore

➔ Rather old concept 
(Fisher in 1926 [1])

Grid scans are incredibly 
inefficient!!

https://arxiv.org/pdf/2202.06416
https://link.springer.com/content/pdf/10.1007/978-1-4612-4380-9_8.pdf


How to make a surrogate model

➔ Generate the datasets
➔ It can be iterated with 

the DoE to optimize the 
space coverage 

➔ Data can be from both 
simulations and data

Change inputs Store results

Training 

Data

Test 



1D example - crystal shadowing
➔ We have a simulation model (e.g. crystal shadowing simulations) that depends on a single 

parameter (e.g. angle)
◆ Each simulation point takes some time O(10’)

➔ We collect simulations changing the angle 



How to make a surrogate model

➔ Model selection and fitting go 
together 

◆ Usually very dependent on the 
problem at hand

◆ One of the main decision is if 
uncertainty should be estimated too 
→ need probabilistic model in case 

➔ Models to be modified on testing 
of part of the training dataset

[ansys]

https://www.ansys.com/blog/optimize-design-simulation-with-ai-ml-metamodeling


1D example - crystal shadowing
➔ We have a simulation model (e.g. crystal shadowing simulations) that depends on a single 

parameter (e.g. angle)
◆ Each simulation point takes some time O(10’)

➔ We collect simulations changing the angle 
➔ Then we fit a few models:

◆ A 15 degree polynomial 
◆ A Gaussian Process [2]
◆ A neural network…

https://gaussianprocess.org/gpml/?utm_source=chatgpt.com


How to make a surrogate model

➔ Model then tested on 
test set 



How to make a surrogate model

➔ Model then tested on 
test set 

➔ if not good enough get 
more samples

Good 
enough

DONE!

Not good 
enough

⇒ Ideally, samples 
from DoE or from 
optimization!



Real example 1D - crystal shadowing 
➔ We have a simulation model (e.g. crystal shadowing simulations) that depends on a single 

parameter (e.g. angle)
◆ Each simulation point takes some time O(10’)

➔ We collect simulations changing the angle 
➔ Then we fit a few models:

◆ A 15 degree polynomial 
◆ A Gaussian Process [2]
◆ A neural network…

➔ And finally we test them → if results are satisfactory, we have our SM!

https://gaussianprocess.org/gpml/?utm_source=chatgpt.com


➔ To make SM more accurate, one can exploit known physics of the system
➔ Training can be constrained by imposing that the solution should satisfy a 

given physical law ⇒ Physics Informed Neural Networks (PINN)
◆ Basically one can use a NN as a generic PDE solution…quite some applications! 

[Advanced] surrogate models: PINN



➔ Simulations can be made more 
or less accurate → more or less 
fidelity1

➔ Data are the highest fidelity
➔ Fidelity can be treated as 

additional dimension and 
hence have the model be able 
to distinguish it and exploit it

◆ High fidelity comes with a cost!

➔ More details in F. Huhn’s talk [3]

[Advanced] surrogate models: multi-fidelity

parameters

Add low or high-fidelity data 

to dataset Update surrogate 

model

Get next 

point: low 

or high 

fidelity

Z
S

 l
o

s
s
e

s

MVRA parameters

1: level of accuracy and detail with which a model represents a system or process. High-fidelity (HF) models provide precise and detailed simulations but are computationally intensive. Low-
fidelity (LF) models, while less accurate, are computationally cheaper and faster to execute

https://indico.cern.ch/event/1439972/contributions/6159193/


Cherry picked CERN applications



➔ New crystal technology can lead to x10 loss 
reduction: Multi Volume Reflection Array 
(MVRA)

➔ Series of N crystals → many parameters to 
optimize for in design phase

◆ Angle
◆ Position
◆ # crystals
◆ Relative alignment 
◆ Bending direction
◆ Crystal width 

➔ Multi-fidelity Bayesian Optimization to 
find optimal configuration ⇒ hopefully to 
be tested in the SPS in 2026!

Crystal shadowing → from 1D to 6D

Direction Angle
(urad)

Position
(mm)

Width
(mm)

Relative angle
(urad)

N. Crystals
(1)

VR inside -789 -16.03 1.4 -7 5

VR outside -562 -15.96 1.3 -9 5



➔ LEIR injection efficiency 
optimization

◆ Today done using VAE to encode 
Schottky spectrum in low 
dimensions and ring intensity → 
optimizer to correct energy ramping 
and debunching cavity phases, e-
gun voltage, cooler and injection 
bump and BHN10

➔ Move towards offline training 
of an RL agent on the 
surrogate model

◆ Data-driven surrogate model of the 
injection 

LEIR data-driven surrogate modeling

[Borja Rodriguez Mateos]



➔ LEIR injection efficiency 
optimization

◆ Today done using VAE to encode 
Schottky spectrum in low 
dimensions and ring intensity → 
optimizer to correct energy ramping 
and debunching cavity phases, e-
gun voltage, cooler and injection 
bump and BHN10

➔ Move towards offline training 
of an RL agent on the 
surrogate model

◆ Data-driven surrogate model of the 
injection 

LEIR data-driven surrogate modeling

[Borja Rodriguez Mateos]

There is so much more!

● Fully data-based models (PFW [4], ZS-TT20 activation [5], etc.) 
● Virtual diagnostics (hysteresis compensation [6], MKP temperature [7], 

etc.)
● Simulation optimization (FCC EM separator [3], MKDH model [3], etc.)
● Digital twins
● Online models (MTE optimization [10], spill 

optimization [11], etc.)

More details in F. Huhn talk [3] and A. Lu [6]

https://docs.google.com/presentation/d/1hfFunXaqrFsjcPk2SE5GYOhQDNUPh2-Trp_bfsIqKOQ/edit#slide=id.p
https://indico.cern.ch/event/1439972/contributions/6159177/
https://cds.cern.ch/record/2845889/files/document.pdf
https://indico.cern.ch/event/1439972/contributions/6159193/
https://indico.cern.ch/event/1439972/contributions/6159193/
https://indico.gsi.de/event/19249/contributions/82632/
https://cds.cern.ch/record/2912940/files/document.pdf
https://indico.cern.ch/event/1439972/contributions/6159193/
https://indico.cern.ch/event/1439972/contributions/6159177/


Integration in the control system



➔ In first approximations, nothing is needed → simulations outputs can 
be stored on local HDs (??) and on EOS/AFS/other could systems

◆ Models can be “pickled” or “jsoned” and stored too

Infrastructure needed to scale it up



➔ In first approximations, nothing is needed → simulations outputs can 
be stored on local HDs (??) and on EOS/AFS/other could systems

◆ Models can be “pickled” or “jsoned” and stored too 

➔ Why do we need an “infrastructure” for SM?
◆ Continuity → Ensure that a model “survives” the owner change
◆ Sharing → easily share a SM with others that may need the same one
◆ Deployment → SMs can be used as quick online models in operation 

Infrastructure needed to scale it up



➔ Fundamental to preserve source data 
for SM

Storage of simulations data for SM



➔ Fundamental to preserve source data 
for SM

◆ The SM is only good as its source data…

Storage of simulations data for SM



➔ Fundamental to preserve source data 
for SM

◆ The SM is only good as its source data…

➔ Ideally we can use NXCALS with the 
ingestion API in python

◆ Already available in Java
◆ Python native API should be possible and 

needed for most of our use-cases 
◆ Timescale to be agreed upon given 

resources (action to follow up)

Storage of simulations data for SM

https://nxcals-docs.web.cern.ch/1.5.14/user-guide/examples-project/examples-ingestion/


➔ Serving:
◆ We have the Machine Learning Platform

[12] ⇒ used in operation in a few cases 
◆ It offers both standalone and local 

inference 
◆ Great for model versioning and integration 

in the control system ⇒ simplification 
needed to be streamlined 

Serving and monitoring @ CERN

neptune.ai

https://cds.cern.ch/record/2809594/files/document.pdf


➔ Serving:
◆ We have the Machine Learning Platform

[12] ⇒ used in operation in a few cases 
◆ It offers both standalone and local 

inference 
◆ Great for model versioning and integration 

in the control system ⇒ simplification 
needed to be streamlined 

➔ Monitoring: 
◆ Need to use own tools (so many available 

open source) 
◆ Hard then to close the loop on updating 

model in MLP…
◆ GitLab already offers way to monitor and 

register models via MLflow [13] - can this 
be a good way to explore? ⇒ need to 
solve this to be able to have up-to-date 
models automatically!

Serving and monitoring @ CERN

neptune.ai

MLFlow

https://cds.cern.ch/record/2809594/files/document.pdf
https://docs.gitlab.com/ee/user/project/ml/experiment_tracking/


➔ Surrogate modelling is a tool that can be used to tackle quite a few 
problems

Conclusions 



➔ Surrogate modelling is a tool that can be used to tackle quite a few 
problems

➔ Still not fully exploited as in other domains/industry 

Conclusions 



➔ Surrogate modelling is a tool that can be used to tackle quite a few 
problems

➔ Still not fully exploited as in other domains/industry 
➔ Infrastructure for full deployment potentially there

◆ Missing NXCALS ingestion API in python ⇒ solution identified
◆ MLP as is can be used for model versioning and standalone/local inference ⇒ done
◆ Missing monitoring/performance tracking for continuous deployment ⇒ decision 

needed

Conclusions 



Thanks!



➔ Training/fitting: In classic terms, training or fitting in machine learning is the process of finding 
the best mathematical function or model that matches (or "fits") a set of data points. Just like in 
classical curve fitting (e.g., fitting a line to a scatter plot), the goal is to adjust the model's 
parameters so it accurately captures the underlying patterns in the data

➔ Bayesian optimization: is a method for finding the best solution to a problem when evaluating 
each option is expensive or time-consuming. It uses a probabilistic model (like a Gaussian 
process) to predict the outcomes of different choices and focuses on testing the most promising 
ones to find the optimal solution efficiently.

➔ Dataset: is a collection of data, usually organized in a structured format like tables or files, that is 
used for analysis, training machine learning models, or drawing insights. It typically includes rows 
representing examples (like people, images, or events) and columns representing features or 
attributes (like age, color, or time).

➔ Multi-fidelity model: it combines information from multiple sources with varying levels of 
accuracy and cost to make predictions or solve problems more efficiently. It uses low-fidelity 
models (cheaper, less accurate) and high-fidelity models (more expensive, more accurate) 
together to balance cost and accuracy.

➔ Physics-Informed Neural Network (PINN): is a type of neural network that incorporates the laws 
of physics (like equations or constraints) into its training process. This helps it solve problems 
more accurately and efficiently by combining data-driven learning with physical principles.

Definitions



➔ Large possibilities on 
the choice of models, 
DoEs, fitting 
strategies…

➔ There is no solution 
that fits all problems! 

Common methods 



➔ First proposed to solve nonlinear PDE [10] (all plots from [10])
➔ Basically using boundary and initial conditions values, NN can 

interpolate the whole system dynamics “knowing” the PDE that 
describe the system

◆ At the same time though, one can just use a physics loss term…it doesn’t have to be a 
PDE system 

Physics Informed Neural Networks

42

https://www-sciencedirect-com.ezproxy.cern.ch/science/article/pii/S0021999118307125
https://www-sciencedirect-com.ezproxy.cern.ch/science/article/pii/S0021999118307125


Physics Informed Neural Networks

Source: [8]

➔ DNN cannot extrapolate beyond the 
training domain…which is exactly 
what we would expect from 
interpolation function

min(Loss) => Loss = Mean(data - prediction)2

43

https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/


Physics Informed Neural Networks

Source: [8]

➔ DNN cannot extrapolate beyond the 
training domain…which is exactly 
what we would expect from 
interpolation function

44

https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/


➔ DNN cannot extrapolate beyond the 
training domain…which is exactly 
what we would expect from 
interpolation function

➔ Go beyond data domain => more 
information needed:

Physics Informed Neural Networks

Source: [8]

min(Loss) => Loss = Mean(data - prediction)2

+ Additional_info(prediction)

45

https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/


➔ DNN cannot extrapolate beyond the 
training domain…which is exactly 
what we would expect from 
interpolation function

➔ Go beyond data domain => more 
information needed:

Physics Informed Neural Networks

Source: [8]

min(Loss) => Loss = Mean(data - prediction)2

+ Additional_info(prediction)

46

https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/

