

Hysteresis Modeling and Compensation Experience from SPS and prospects for other machines

Anton Lu

V. Kain, C. Petrone, V. Di Capua, M. Taupadel, M. Schenk

EPA WP4 $BE\text{-}CSS\text{-}DSB$ | TE-MSC-TM (\rightarrow MMM)

Outline

- Hysteresis in accelerator magnets and impact on operations
- Feed-forward hysteresis compensation (with artificial intelligence)
	- > Significant achievements
	- … and challenges encountered
	- > Magnetic modeling
	- Controls integration
	- Guardrails and monitoring
	- Magnetic measurement lessons and improvements
- Operational status of hysteresis compensation
- Outlook and conclusion

And the need for reproducible fields

- Nonlinear static and dynamic effects in accelerator magnets, when uncorrected …
	- … hinder the efficiency and flexibility of (multicycling) accelerator operations

Hysteresis in the accelerator magnets

- SPS status quo
	- MD1 quasi-degaussing cycle
	- Manual change of SFT beam tune whenever LHC requests beam
	- Still beam losses / degradation at injection

• Other accelerators

Degaussing cycles and constrained cycle sequences due to hysteresis

IN.B. Only PSB and PS dipoles have feed-back

field control

Hysteresis in the accelerator magnets

And the need for reproducible fields

- Cycle-to-cycle differences are small …
	- Hysteresis effects ± 1 permil, but cycle-to-cycle differences are \pm 100 ppm or less ... (in SPS MBIs)
- … But still significant effects on beam
	- 100 ppm tolerance on SFT 400 GeV flat top
	- 10 ppm tolerance on 14 or 26 GeV flat bottom

SPS MBI Cycle-to-cycle hysteresis

Hysteresis Modeling and Compensation | JAPW 2024 2024 2024-12-12

Through feed-forward field compensation

• Most magnetic circuits are controlled in current by translating momentum / tune / correction etc.

Through feed-forward field compensation

- Most magnetic circuits are controlled in current by translating momentum / tune / correction etc.
	- Control system is agnostic to actual field response in the machine

Through feed-forward field compensation

- Most magnetic circuits are controlled in current by translating momentum / tune / correction etc.
	- Control system is agnostic to actual field response in the machine
- Instead: model magnetic field response $I \rightarrow B$ with ML, from measurements

Through feed-forward field compensation

- Most magnetic circuits are controlled in current by translating momentum / tune / correction etc.
	- Control system is agnostic to actual field response in the machine
- Instead: model magnetic field response $I \rightarrow B$ with ML, from measurements
	- Knowing next cycle to be played ...
	- λ ... feed-forward correct the field by applying a ΔI

CERI

Through feed-forward field compensation

- Most magnetic circuits are controlled in current by translating momentum / tune / correction etc.
	- Control system is agnostic to actual field response in the machine
- Instead: model magnetic field response $I \rightarrow B$ with ML, from measurements
	- λ Knowing next cycle to be played ...
	- λ ... feed-forward correct the field by applying a ΔI for every cycle
	- $\lambda \Rightarrow$ We now can achieve reproducible fields
	- λ Control paradigm is transparent to set B / Q / K

CERI

Operations-ready field compensation

- Successful SPS MB compensation on SFT flat top
	- For common physics configurations, during MDs
		- Spill macrostructure stable for over 1h
	- Field compensation around 100 ppm $(2-3 \times 10^{-4} \text{ T} \Rightarrow \Delta I \approx 0.7 \text{ A})$
	- Main operational study thus far only MBIs…
	- … but other SPS magnetic circuits coming soon
- Field prediction and compensation at injection
	- Low field predictions challenging ($\Delta B \approx 10$ ppm required), where beam rigidity is low, but possible
	- Not all effects on the beam can be seen on measured field
- Flexible and modular modeling and feed-forward compensation strategy in place
	- Compatible with other magnetic circuits

(Field compensation OFF) $FT + LHC \rightarrow 2x FT$

Field compensation ON – worst case

… and challenges

- Only effects from measured field can be compensated by field prediction
	- Field predictions satisfy the required accuracy 10 ppm
	- But some (dynamic) effects on beam still not explained
	- … and highly accurate field predictions, (and hence compensation) are difficult to achieve for 100 % of scenarios

… and challenges

- Only effects from measured field can be compensated by field prediction
	- Field predictions satisfy the required accuracy 10 ppm
	- But some (dynamic) effects on beam still not explained
	- … and highly accurate field predictions, (and hence compensation) are difficult to achieve for 100 % of scenarios
- High-accuracy pulsed lab measurements are extremely challenging
	- Pulsed field measurements in lab remain limited at ≈ 100 ppm
	- λ ... compared to online B-Train at ≈ 10 ppm
	- Significant work required to achieve desired accuracy

… and challenges

- Only effects from measured field can be compensated by field prediction
	- Field predictions satisfy the required accuracy 10 ppm
	- But some (dynamic) effects on beam still not explained
	- … and highly accurate field predictions, (and hence compensation) are difficult to achieve for 100 % of scenarios
- High-accuracy pulsed lab measurements are extremely challenging
	- Pulsed field measurements in lab remain limited at ≈ 100 ppm
	- λ ... compared to online B-Train at ≈ 10 ppm
	- Significant work required to achieve desired accuracy

High-Accuracy Field Modeling Techniques

CERI

- Model measured $\{I, B\} \rightarrow B$ as a multivariate time series
	- 1 × 10⁻⁵ *T* (10 ppm) accurate field predictions using (NN) transformers, learning from **only data**
	- Variables used for training restricted to what is available online

High-Accuracy Field Modeling Techniques

CERI

- Model measured $\{I, B\} \rightarrow B$ as a multivariate time series
	- 1 × 10⁻⁵ *T* (10 ppm) accurate field predictions using (NN) transformers, learning from **only data**
	- Variables used for training restricted to what is available online
- N.B. "True past field" is not available online besides for MBI (B-Train)

Autoregressive predictions the only choice for MQ+

High-Accuracy Field Modeling Techniques

- Model measured $\{I, B\} \rightarrow B$ as a multivariate time series
	- 1 × 10⁻⁵ *T* (10 ppm) accurate field predictions using (NN) transformers, learning from **only data**
	- Variables used for training restricted to what is available online
- N.B. "True past field" is not available online besides for MBI (B-Train)
	- Autoregressive predictions the only choice for MQ+
	- TECH investigating using coil voltage instead to infer future field
		- For going online with voltage, FGC needs to publish V_{meas}

High-Accuracy Field Modeling Techniques

- Model measured $\{I, B\} \rightarrow B$ as a multivariate time series
	- 1 × 10⁻⁵ *T* (10 ppm) accurate field predictions using (NN) transformers, learning from **only data**
	- Variables used for training restricted to what is available online
- N.B. "True past field" is not available online besides for MBI (B-Train)
	- Autoregressive predictions the only choice for MQ+
	- TECH investigating using coil voltage instead to infer future field
		- For going online with voltage, FGC needs to publish V_{meas}

Vertical integration of control stack

CERN

- New ΔB (ΔI) to to be applied **every cycle** *before* **cycle start**
- Now: trim LSA parameter
	- λ Leverage LSA to figure out ΔI and drive to FGC

- New ΔB (ΔI) to to be applied **every cycle** *before* **cycle start**
- Now: trim LSA parameter
	- λ Leverage LSA to figure out ΔI and drive to FGC
	- Trim *transient* settings on every cycle
	- … but suitable for initial tests

- New ΔB (ΔI) to to be applied **every cycle** *before* **cycle start**
- Now: trim LSA parameter
	- λ Leverage LSA to figure out ΔI and drive to FGC
	- Trim *transient* settings on every cycle
	- … but suitable for initial tests
- Future: use FGC real-time channel to pass ΔI
	- λ ... but still use LSA to translate $\Delta B \rightarrow \Delta I$
	- One step closer to "real-time" field compensation

- New ΔB (ΔI) to to be applied **every cycle** *before* **cycle start**
- Now: trim LSA parameter
	- λ Leverage LSA to figure out ΔI and drive to FGC
	- Trim *transient* settings on every cycle
	- … but suitable for initial tests
- Future: use FGC real-time channel to pass ΔI
	- λ ... but still use LSA to translate $\Delta B \rightarrow \Delta I$
	- One step closer to "real-time" field compensation
- Future-future: bypass LSA entirely
	- Autonomous background field compensation

• Limiting compensation range

- Hysteresis effects ± 1 permil, but cycle-to-cycle differences are \pm 100 ppm or less
- $\rightarrow \rightarrow$ We can bound compensation ranges to safe (and known) limits

SPS MBI Cycle-to-cycle hysteresis

- Limiting compensation range
	- \rightarrow Hysteresis effects ± 1 permil, but cycle-to-cycle differences are \pm 100 ppm or less
	- $\lambda \Rightarrow$ We can bound compensation ranges to safe (and known) limits
- Significant testing before "hands-free" deployment
	- We guarantee monitoring of field predictions and compensation
	- Set up metrics to monitor online field prediction quality \Rightarrow stop compensation when metrics go beyond limits
	- Different metrics needed for MQ+ where B-Train is not available
	- Monitor autoregressive prediction drift over time

Hysteresis Modeling and Compensation | JAPW 2024 2024-12-12

• Can be solved by modeling $\{I, V\} \rightarrow B$

24

New magnetic measurement / magnetic preparation paradigm

Lessons learned – for the future

- High-accuracy measurements of physics cycles I_{ref} are not plug-and-play
	- New measurement bench and sensor fusion developed for MBI/MQ/LOD/LSF to reach B-train level accuracy ($\approx 1 \times 10^{-5}$ T/ 10 ppm)
	- Standard characterization of SPS magnets are qualified comparing with reference magnets for the absolute field (at 10−5 level) in the lab. Work on going to improve for AI training requirements specially for dynamic effects study.
- Physical constraints are also a concern
	- To accurately represent the machine, measurements with a vacuum chamber may be necessary, depending on the measured effects magnitude; dipoles already measured with a vacuum chambers, for MQs a new fluxmeter is designed and produced.
	- In few cases (e.g., LEIR) spare magnets not available for measurement / characterization on demand
	- Magnets not always available for measurement / characterization on demand; crucial to have flexible laboratory
- Powering limitations in lab
	- Power converters stability and control algorithms overtime $(I_{meas}$ lab vs machine) may lead in a different response for the same programmed current (l_{ref}).
	- The measurements in the laboratory may have a different data distribution w.r.t. data from real-time measurement system, not necessarily compatible for ML training purpose

Summary **Operational status of hysteresis compensation**

\cdot $<$ 100 ppm field corrections for SFT flat top to stabilize the spill macrostructure

- To be put into operation and significantly tested and monitored by mid-2025
- \approx 10 ppm accurate field predictions for common cycle sequences
	- λ ... and ≈ 100 ppm predictions on more general cycle sequences
	- Pre-train NN models on simulated data and transfer-learn to measurements
	- Low-field correction at injection to reduce injection losses within reach
- But not all phenomenon can be measured
	- Beam-based eddy-current studies and/+ ML-field compensation at flat bottom and ramp by mid-2025
	- MD1 quasi-degaussing can go out the window after full field compensation

• Feed-forward compensation scheme has proven benefits

- Minimally invasive to the machine, and transparent integration into control stack
- Compensation strategy is modular and highly flexible and **extendable to other magnets and machines**

Summary and Outlook **EPA WP4 in 2025**

- SPS MB full-cycle compensation
- SPS other magnets field compensation
	- If Initial tests of MQ field compensation from beam commissioning 2025 and through the year
	- … and sextupole and octupole field compensation tests to follow after MQ

• Towards other machines

- > Soon[™] QUEST in BE-ABP for simulating LEIR dipole and PS combined function magnets
- Field compensation for other machines during LS3 following SPS
	- Pulsed magnetic measurement procedures learnt from SPS experiences in lab critical for success

Questions

Extra slides

Overview **Analysis – Hysteresis in SPS main dipoles**

- Field deviations due to hysteresis between $\pm 3 \times$ 10^{-3} T at most
	- But typically, below 3×10^{-4} T cycle-to-cycle
	- Similar range for SPS QF/QD
- The field corrections depend on beam energy / field strength / tolerance
	- For SFTPRO slow extraction (400 Gev), tolerance is below 1×10^{-4} T
	- For SFTPRO injection (14 GeV) tolerance is $\approx 1 \times 10^{-5}$ T
	- For LHC-type injection (26 GeV) tolerance is $\approx 2 \times 10^{-5}$ T

Know **Magnetic measurements**

- Measure dipole magnetic response with online B-train
	- Problems with drift to reach desired accuracy, especially at SFTPRO FB
- Lab measurements for quadrupoles, sextupoles, octupules
	- Challenges to reach desired accuracy using induction coil (drift) or hall sensors (noise)
- Accurate pulsed measurements very challenging in the lab
- Power converter in lab is different from FGC
	- Lab not entirely representative of SPS conditions

Predict **Autoregressive predictions**

- With initial I_0 , B_0 of length c and I_1 of length p , predict \widehat{B}_1
- For next step use I_1 and \widehat{B}_1 (and part of I_0 and B_0 if $p < c$) to predict \widehat{B}_2
- We only need to known ground truth field B_0 at beginning of prediction, the rest are prediction only
	- Since for QF/QD+ we do not have ground truth observable (B-Train)

Hysteresis Compensation Progress | EPA community Meeting #4

Validation

Predict

- Validation on common supercycle show promising results
	- Below 10⁻⁴ T error in most cases
	- Error does not seem to run away / accumulate when predicting autoregressively

Predict **Cycle-by-Cycle Online inference**

- Precycle the magnets to always start from the same field
	- **>** For SPS MBIs: I_0 , B_0 from B-Train
	- For the rest: I_0 , B_0 from lab
- Then predict magnetic field for each cycle
	- 2500 ms before cycle start, predict \widehat{B}_{n+1} using programmed current I_{n+1}^{prog} and I_n , B_n for the next cycle
	- N.B. for magnets with B-train we can always use "true" past for future predictions

• Spill macrostructure stable in most

Significant and consistent improvements on spill quality

cases

Results

- Worst case is still better than when hysteresis compensation is off and switching from FT \rightarrow LHC+FT SSC
- Most cases preserves spill macrostructure through supercycle changes, or when there are 1+ FT in the same supercycle

 \in

(Field compensation OFF) $FT + LHC \rightarrow 2x FT$

Field compensation ON – worst case

Results **Significant and consistent improvements on spill quality**

- Evolution of spill quality over time, with autoregressive field predictions + compensation
	- Corrections only on SFTPRO1 flat top, on **every cycle**
- Reference taken at the beginning and unchanged throughout the MD
	- > Spill duty factor remains largely unchanged
	- … But RMSE between reference and measured BCT is significant when field is poorly / uncorrected

Dedicated MD 2024-10-09