

Hysteresis Modeling and Compensation Experience from SPS and prospects for other machines

Anton Lu

V. Kain, C. Petrone, V. Di Capua, M. Taupadel, M. Schenk

EPA WP4 BE-CSS-DSB | TE-MSC-TM (→ MMM)

Outline

- Hysteresis in accelerator magnets and impact on operations
- Feed-forward hysteresis compensation (with artificial intelligence)
 - > Significant achievements
 - > ... and challenges encountered
 - > Magnetic modeling
 - > Controls integration
 - > Guardrails and monitoring
 - > Magnetic measurement lessons and improvements
- Operational status of hysteresis compensation
- Outlook and conclusion

Hysteresis in the accelerator magnets And the need for reproducible fields

- Nonlinear static and dynamic effects in accelerator magnets, when uncorrected ...
 - … hinder the efficiency and flexibility of (multicycling) accelerator operations
- SPS status quo
 - > MD1 quasi-degaussing cycle
 - Manual change of SFT beam tune whenever LHC requests beam
 - > Still beam losses / degradation at injection

• Other accelerators

 Degaussing cycles and constrained cycle sequences due to hysteresis

IN.B. Only PSB and PS dipoles have feed-back

field control

Hysteresis in the accelerator magnets

And the need for reproducible fields

- Cycle-to-cycle differences are small ...
 - > Hysteresis effects ± 1 permil, but cycle-to-cycle differences are ± 100 ppm or less ... (in SPS MBIs)
- ... But still significant effects on beam
 - > 100 ppm tolerance on SFT 400 GeV flat top
 - > 10 $\,$ ppm tolerance on 14 or 26 GeV flat bottom

SPS MBI Cycle-to-cycle hysteresis

Through feed-forward field compensation

• Most magnetic circuits are controlled in current by translating momentum / tune / correction etc.

Through feed-forward field compensation

- Most magnetic circuits are controlled in current by translating momentum / tune / correction etc.
 - Control system is agnostic to actual field response in the machine

Through feed-forward field compensation

- Most magnetic circuits are controlled in current by translating momentum / tune / correction etc.
 - Control system is agnostic to actual field response in the machine
- Instead: model magnetic field response $I \rightarrow B$ with ML, from measurements

Through feed-forward field compensation

- Most magnetic circuits are controlled in current by translating momentum / tune / correction etc.
 - Control system is agnostic to actual field response in the machine
- Instead: model magnetic field response $I \rightarrow B$ with ML, from measurements
 - > Knowing next cycle to be played ...
 -) ... feed-forward correct the field by applying a ΔI

CER

Through feed-forward field compensation

- Most magnetic circuits are controlled in current by translating momentum / tune / correction etc.
 - Control system is agnostic to actual field response in the machine
- Instead: model magnetic field response $I \rightarrow B$ with ML, from measurements
 - > Knowing next cycle to be played ...
 - > ... feed-forward correct the field by applying a ΔI for every cycle
 - ightarrow ightarrow We now can achieve reproducible fields
 -) Control paradigm is transparent to set $B \ / \ Q \ / \ K$

CERI

Operations-ready field compensation

- Successful SPS MB compensation on SFT flat top
 - > For common physics configurations, during MDs
 - Spill macrostructure stable for over 1h
 - > Field compensation around 100 ppm (2-3 \times 10⁻⁴ T \Rightarrow $\Delta I \approx$ 0.7 A)
 - > Main operational study thus far only MBIs...
 - > ... but other SPS magnetic circuits coming soon
- Field prediction and compensation at injection
 - > Low field predictions challenging ($\Delta B \approx 10 \text{ ppm}$ required), where beam rigidity is low, but possible
 - > Not all effects on the beam can be seen on measured field
- Flexible and modular modeling and feed-forward compensation strategy in place
 - > Compatible with other magnetic circuits

(Field compensation OFF)

 $FT + LHC \rightarrow 2x FT$

Field compensation ON – worst case

... and challenges

- Only effects from measured field can be compensated by field prediction
 -) Field predictions satisfy the required accuracy $10\; ppm$
 - > But some (dynamic) effects on beam still not explained
 - ... and highly accurate field predictions, (and hence compensation) are difficult to achieve for 100 % of scenarios

... and challenges

- Only effects from measured field can be compensated by field prediction
 -) Field predictions satisfy the required accuracy $10\; ppm$
 - > But some (dynamic) effects on beam still not explained
 - ... and highly accurate field predictions, (and hence compensation) are difficult to achieve for 100 % of scenarios
- High-accuracy pulsed lab measurements are extremely challenging
 - > Pulsed field measurements in lab remain limited at $\approx 100 \; ppm$
 -) ... compared to online B-Train at $\approx 10 \ ppm$
 - > Significant work required to achieve desired accuracy

... and challenges

- Only effects from measured field can be compensated by field prediction
 -) Field predictions satisfy the required accuracy $10\; ppm$
 - > But some (dynamic) effects on beam still not explained
 - ... and highly accurate field predictions, (and hence compensation) are difficult to achieve for 100 % of scenarios
- High-accuracy pulsed lab measurements are extremely challenging
 - > Pulsed field measurements in lab remain limited at $\approx\,100\;ppm$
 -) ... compared to online B-Train at $\approx 10 \; ppm$
 - > Significant work required to achieve desired accuracy

High-Accuracy Field Modeling Techniques

- Model measured $\{I, B\} \rightarrow B$ as a multivariate time series
 - > $1 \times 10^{-5} T$ (10 ppm) accurate field predictions using (NN) transformers, learning from **only data**
 - > Variables used for training restricted to what is available online

High-Accuracy Field Modeling Techniques

CERN

- Model measured $\{I, B\} \rightarrow B$ as a multivariate time series
 - > $1 \times 10^{-5} T$ (10 ppm) accurate field predictions using (NN) transformers, learning from **only data**
 - > Variables used for training restricted to what is available online
- N.B. "True past field" is not available online besides for MBI (B-Train)

> Autoregressive predictions the only choice for MQ+

High-Accuracy Field Modeling Techniques

CERN

- Model measured $\{I, B\} \rightarrow B$ as a multivariate time series
 - > $1 \times 10^{-5} T$ (10 ppm) accurate field predictions using (NN) transformers, learning from **only data**
 - > Variables used for training restricted to what is available online
- N.B. "True past field" is not available online besides for MBI (B-Train)
 - > Autoregressive predictions the only choice for MQ+
 - > TECH investigating using coil voltage instead to infer future field
 - For going online with voltage, FGC needs to publish V_{meas}

High-Accuracy Field Modeling Techniques

- Model measured $\{I, B\} \rightarrow B$ as a multivariate time series
 - > $1 \times 10^{-5} T$ (10 ppm) accurate field predictions using (NN) transformers, learning from **only data**
 - > Variables used for training restricted to what is available online
- N.B. "True past field" is not available online besides for MBI (B-Train)
 - > Autoregressive predictions the only choice for MQ+
 - > TECH investigating using coil voltage instead to infer future field
 - For going online with voltage, FGC needs to publish V_{meas}

Vertical integration of control stack

CERN

- New ΔB (ΔI) to to be applied every cycle before cycle start
- Now: trim LSA parameter
 -) Leverage LSA to figure out ΔI and drive to FGC

- New ΔB (ΔI) to to be applied every cycle before cycle start
- Now: trim LSA parameter
 -) Leverage LSA to figure out ΔI and drive to FGC
 - > Trim *transient* settings on every cycle
 - > ... but suitable for initial tests

- New ΔB (ΔI) to to be applied every cycle before cycle start
- Now: trim LSA parameter
 -) Leverage LSA to figure out ΔI and drive to FGC
 - > Trim *transient* settings on every cycle
 - > ... but suitable for initial tests
- Future: use FGC real-time channel to pass ΔI
 -) ... but still use LSA to translate $\Delta B \rightarrow \Delta I$
 - > One step closer to "real-time" field compensation

- New ΔB (ΔI) to to be applied every cycle before cycle start
- Now: trim LSA parameter
 -) Leverage LSA to figure out ΔI and drive to FGC
 - > Trim *transient* settings on every cycle
 - > ... but suitable for initial tests
- Future: use FGC real-time channel to pass ΔI
 -) ... but still use LSA to translate $\Delta B \rightarrow \Delta I$
 - > One step closer to "real-time" field compensation
- Future-future: bypass LSA entirely
 - > Autonomous background field compensation

• Limiting compensation range

- > Hysteresis effects ± 1 permil, but cycle-to-cycle differences are $\pm \ 100 \ ppm$ or less
-) \Rightarrow We can bound compensation ranges to safe (and known) limits

SPS MBI Cycle-to-cycle hysteresis

- Limiting compensation range
 - > Hysteresis effects ± 1 permil, but cycle-to-cycle differences are $\pm~100~ppm$ or less
 - \rightarrow We can bound compensation ranges to safe (and known) limits
- Significant testing before "hands-free" deployment
 - > We guarantee monitoring of field predictions and compensation
 - > Set up metrics to monitor online field prediction quality \Rightarrow stop compensation when metrics go beyond limits
 - > Different metrics needed for MQ+ where B-Train is not available
 - > Monitor autoregressive prediction drift over time
 - Can be solved by modeling $\{I, V\} \rightarrow B$

New magnetic measurement / magnetic preparation paradigm

Lessons learned – for the future

- High-accuracy measurements of physics cycles I_{ref} are not plug-and-play
 - > New measurement bench and sensor fusion developed for MBI/MQ/LOD/LSF to reach B-train level accuracy ($\approx1\times10^{-5}$ T / 10 ppm)
 - Standard characterization of SPS magnets are qualified comparing with reference magnets for the absolute field (at 10⁻⁵ level) in the lab. Work on going to improve for AI training requirements specially for dynamic effects study.
- Physical constraints are also a concern
 - > To accurately represent the machine, measurements with a vacuum chamber may be necessary, depending on the measured effects magnitude; dipoles already measured with a vacuum chambers, for MQs a new fluxmeter is designed and produced.
 - In few cases (e.g., LEIR) spare magnets not available for measurement / characterization on demand
 - Magnets not always available for measurement / characterization on demand; crucial to have flexible laboratory
- Powering limitations in lab
 - > Power converters stability and control algorithms overtime (I_{meas} lab vs machine) may lead in a different response for the same programmed current (I_{ref}).
 - > The measurements in the laboratory may have a different data distribution w.r.t. data from real-time measurement system, not necessarily compatible for ML training purpose

Operational status of hysteresis compensation Summary

• < 100 ppm field corrections for SFT flat top to stabilize the spill macrostructure

- > To be put into operation and significantly tested and monitored by mid-2025
- ≈ 10 ppm accurate field predictions for common cycle sequences
 -) ... and ≈ 100 ppm predictions on more general cycle sequences
 - Pre-train NN models on simulated data and transfer-learn to measurements
 - > Low-field correction at injection to reduce injection losses within reach
- But not all phenomenon can be measured
 - > Beam-based eddy-current studies and/+ ML-field compensation at flat bottom and ramp by mid-2025
 - > MD1 quasi-degaussing can go out the window after full field compensation

• Feed-forward compensation scheme has proven benefits

- > Minimally invasive to the machine, and transparent integration into control stack
- > Compensation strategy is modular and highly flexible and extendable to other magnets and machines

EPA WP4 in 2025 Summary and Outlook

- SPS MB full-cycle compensation
- SPS other magnets field compensation
 - Initial tests of MQ field compensation from beam commissioning 2025 and through the year
 - > ... and sextupole and octupole field compensation tests to follow after MQ

Towards other machines

- Soon[™] QUEST in BE-ABP for simulating LEIR dipole and PS combined function magnets
- > Field compensation for other machines during LS3 following SPS
 - Pulsed magnetic measurement procedures learnt from SPS experiences in lab critical for success

2024-12-12

Questions

Extra slides

Analysis – Hysteresis in SPS main dipoles *Overview*

- Field deviations due to hysteresis between $\pm 3\times 10^{-3}~{\rm T}$ at most
 -) But typically, below $3 \times 10^{-4} T$ cycle-to-cycle
 - > Similar range for SPS QF/QD
- The field corrections depend on beam energy / field strength / tolerance
 -) For SFTPRO slow extraction (400 Gev), tolerance is below $1\times 10^{-4}~{\rm T}$
 -) For SFTPRO injection (14 GeV) tolerance is $\approx 1 \times 10^{-5}~\text{T}$
 -) For LHC-type injection (26 GeV) tolerance is $\approx 2 \times 10^{-5}~\text{T}$

Magnetic measurements Know

- Measure dipole magnetic response with online B-train
 - > Problems with drift to reach desired accuracy, especially at SFTPRO FB
- Lab measurements for quadrupoles, sextupoles, octupules
 - Challenges to reach desired accuracy using induction coil (drift) or hall sensors (noise)
- Accurate pulsed measurements very challenging in the lab
- Power converter in lab is different from FGC
 - > Lab not entirely representative of SPS conditions

Autoregressive predictions Predict

- With initial I_0, B_0 of length c and I_1 of length p, predict \hat{B}_1
- For next step use I_1 and \hat{B}_1 (and part of I_0 and B_0 if p < c) to predict \hat{B}_2
- We only need to known ground truth field B_0 at beginning of prediction, the rest are prediction only
 - > Since for QF/QD+ we do not have ground truth observable (B-Train)

Hysteresis Compensation Progress | EPA community Meeting #4

Validation

Predict

Validation on common supercycle show promising results

- Below 10⁻⁴ T error in most cases
- > Error does not seem to run away / accumulate when predicting autoregressively

Cycle-by-Cycle Online inference *Predict*

- Precycle the magnets to always start from the same field
 - **)** For SPS MBIs: I_0 , B_0 from B-Train
 - **)** For the rest: I_0 , B_0 from lab
- Then predict magnetic field for each cycle
 - > 2500 ms before cycle start, predict \hat{B}_{n+1} using programmed current I_{n+1}^{prog} and I_n , B_n for the next cycle
 - > N.B. for magnets with B-train we can always use "true" past for future predictions

Significant and consistent improvements on spill quality Results

- Spill macrostructure stable in most cases
 - > Worst case is still better than when hysteresis compensation is off and switching from FT → LHC+FT SSC
 - > Most cases preserves spill macrostructure through supercycle changes, or when there are 1+ FT in the same supercycle

(Field compensation OFF) FT + LHC -> 2x FT

Field compensation ON - worst case

Significant and consistent improvements on spill quality *Results*

- Evolution of spill quality over time, with autoregressive field predictions + compensation
 - > Corrections only on SFTPRO1 flat top, on every cycle
- Reference taken at the beginning and unchanged throughout the MD
 - > Spill duty factor remains largely unchanged
 - > ... But RMSE between reference and measured BCT is significant when field is poorly / uncorrected

