
GPU Optimizations for
HEP Analysis in ROOT

Kevin Nobel
Supervisors: Monica Dessole and Jolly Chen

GPU Optimizations for HEP Analysis in ROOT 1



Introduction

Batch Histogramming

Offloading .Define() to GPUs

Future Work

Conclusion

GPU Optimizations for HEP Analysis in ROOT 2



Introduction

FilterTrigger Load Bulk
Generate

(Additional)
Columns

Find Bin Add Bin
Content

Update
Stats

Transfer
Histogram

Result

Histogramming

A typical HEP analysis:

• Load data

• Filter data

• Define additional columns

• Fill a histogram

GPU Optimizations for HEP Analysis in ROOT 3



Batch Histogramming
Goal and Motivation

• Motivation: Future increase in data to be
processed requires faster histogramming

• Goal: fill multiple histograms in parallel on
GPUs

• Especially interesting if there is overlap in the
input data

• Better locality and a reduction in data transfers

GPU Optimizations for HEP Analysis in ROOT 4



Batch Histogramming
Implementation

Features:

• Multiple histograms

• Mixed dimensions

• Different axis sizes

• Fixed and variable
bins

GPU Datastructure →

h0 : 1D h2 : 2D h2 : 2Dhistograms

histoResultOffset

nHistos 3

nDims 1 2 2

histoOffset

-1

nBinsAxis
xMin
xMax

binEdgesOffset

binEdges

GPU Optimizations for HEP Analysis in ROOT 5



Batch Histogramming
Results

• CPU: Ryzen 7 5700g, GPU: RTX 3060

• 1D + 2D + 2D histogram, 100 Million rows

• Speedup: 5.9× over single-threaded CPU impl.

• GPU Fill is much faster (417× speedup)

• Spend 98.6% of the (GPU) runtime on
transferring data...

GPU Optimizations for HEP Analysis in ROOT 6



Offloading .Define() to GPUs

• Multiple histograms on the same columns are
rare

• Generating new data based on the same
columns is more common

• What if we compute new columns on the GPU?
• Define may be computationally heavy
• Potentially less data transferred

GPU Optimizations for HEP Analysis in ROOT 7



Poster Presentation

• Presented the idea at the
Summer Student Poster
Presentationa

aindico.cern.ch/event/1435014/

GPU Optimizations for HEP Analysis in ROOT 8

https://indico.cern.ch/event/1435014/#83-eliminating-coffee-breaks-a


DiMuon

• Porting DiMuon analysis1 from the ROOT
tutorials

• Calculate invariant mass of all events with
exactly 2 muons with opposite charge

• Not necessarily a good use-case
• Just one histogram
• Transfer 8 doubles to fill a single bin
• Start with something simple

1root.cern/doc/master/df102 NanoAODDimuonAnalysis 8C.html

GPU Optimizations for HEP Analysis in ROOT 9

https://root.cern/doc/master/df102__NanoAODDimuonAnalysis_8C.html


DiMuon
Approach

• Discard irrelevant events on CPU

• Calculate invariant mass on GPU

• Fill histogram on GPU

Load Event

Filter
nMuon == 2

Filter
charge[0] != charge[1]

Transfer
Full Bulk

Compute
Invariant Mass

Find Histogram Bin

Add Histogram
Bin Content

Add to Bulk
2 x (Pt, Eta, Phi, M)

Transfer
Histogram Result

GPU Optimizations for HEP Analysis in ROOT 10



DiMuon
Results

• CPU: Ryzen 7 5700g, GPU: RTX 3060

• 24.067.843 events

• Speedup: 2.6× over 16 threads CPU impl.

• Data transfer: 57.5%

GPU Optimizations for HEP Analysis in ROOT 11



Folded W Mass

• 10.000 defines in a for loop

• All on just a few columns
• Varying scale + resolution for each define

• 100 scales x 100 resolutions

GPU Optimizations for HEP Analysis in ROOT 12



Folded W Mass
Approach

• Discard irrelevant events on CPU

• Calculate truePt values on CPU

• Apply forward folding on GPU

• Calculate invariant mass on GPU

• Fill histogram on GPU

Load Event

Filter
upIndex >= 0 &&
downIndex >= 0

Transfer
Full Bulk

Compute
Invariant Mass

Find Histogram Bin

Add Histogram
Bin Content

Add to Bulk
2 x

(Pt, Eta, Phi, E, truePt)

Transfer
Histogram Result

Define
2 x truePt

Compute
Forward Fold

10
.0
00

x

GPU Optimizations for HEP Analysis in ROOT 13



Folded W Mass
Results

• CPU: Ryzen 7 5700g, GPU: RTX 3060

• Tested with 100.000 events (1 billion bins filled)

• Speedup: 95× over 16 threads CPU impl.

• Data transfer: 0.1%

GPU Optimizations for HEP Analysis in ROOT 14



Future Work

• Develop a generic solution to execute
.Define() and .Filter() on GPUs

• Integrate GPU histogramming into ROOT

GPU Optimizations for HEP Analysis in ROOT 15



Conclusion

• Implemented a generic batch histogramming
GPU kernel

• Explored how to potentially optimize
.Define() on GPUs

• Presented my work during the Summer Student
Poster Presentation

• Code is published on GitHub2

2github.com/tweska/cern-ssp/

GPU Optimizations for HEP Analysis in ROOT 16

https://github.com/tweska/cern-ssp/

	Introduction
	Batch Histogramming
	Offloading .Define() to GPUs
	Future Work
	Conclusion

