Evaluating Trigger Efficiencies for W-Boson to Three Charged Pion Decays

Logan Switzer Supervisor: Riccardo Salvatico

CMS Background

- ✤ Compact Muon Solenoid (CMS)
 - Goal: General detector that aims to test the Standard Model of Particle Physics.
- ✤ Tracker

> Pixel

> Silicon

3m 200 Key: Muon Electron Charged Hadron (e.g. Pion) Neutral Hadron (e.g. Neutron) ---- Photon 0 Tracka Electromagneti Calorimeter Hadron Superconducting Calorimeter Solenoid Iron return yoke interspersed Transverse slice with Muon chambers through CMS

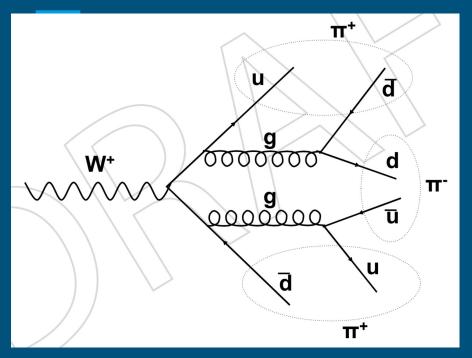
- ✤ Calorimeters
 - Electromagnetic Colorimeter
 - ➤ Hadronic Calorimeter

https://www.researchgate.net/

Muon Chambers

CMS Trigger Systems

Trigger


- Detector component that sifts through data looking for events to save and events to discard.
 - 32 million bunch crossings per second and each event is more than one MB!!

✤ Level 1 (L1) Trigger

- > First level of triggers that data goes through
- ➤ Hardware-Based (FPGAs)
- > Makes the most simplest of decisions (most inclusive)
- ► From 32 MHz to 100 kHz
- > Only Calorimeters and Muon Chamber Data

- High Level Trigger (HLT)
 - > Next Phase after L1 Trigger
 - Software-Based (Commercial CPUs and GPUs)
 - Makes more Complicated Decisions
 - ➤ From 100 kHz to 1kHz
 - \succ Processing each event is about 400 ms
 - > All detector areas are covered

My Specific Project

 Description: Evaluating HLT efficiencies for W-boson decays into three charged pions.

- \succ If found:
 - Potential alternative measurement of W mass
 - Prove its branching fraction
 - Help theorists make rare decay calculations
- Context: The current Trigger Algorithm, Deep Tau, is going out of commission.

 Goal: Evaluate Trigger efficiencies to find either a more efficient or equally efficient trigger algorithm to replace DeepTau

DeepTau and ParticleNet

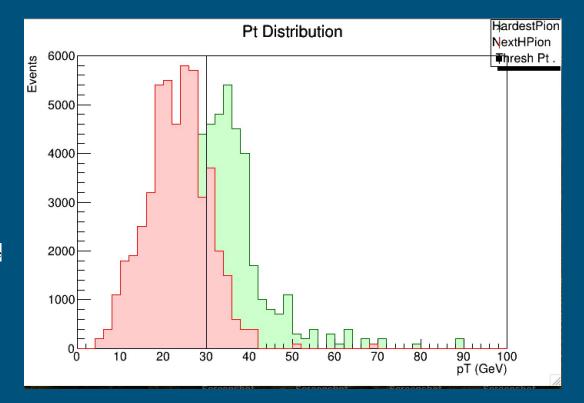
DeepTau (HLT Algorithm)

- Looks for and reconstructs Hadronic Tau decays.
- Current Trigger algorithm used for W to 3 Pions.

*DeepTau Out of Commision: Everyone is using ParticleNet except this group. Having DeepTau is hindrance.

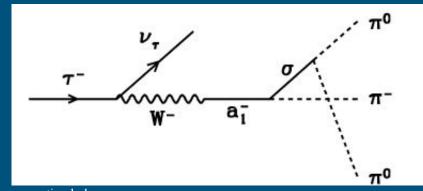
ParticleNet (HLT Algorithm)

- Looks for and reconstructs jets.
- A lot more people use ParticleNet instead of DeepTau.


General Set-Up

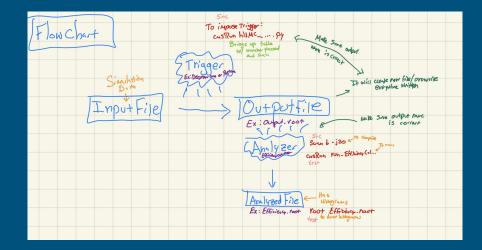
✤ DeepTau Trigger:

HLT_DoubleMediumDeepTauPFTauHPS30_L2N N_eta2p1_OneProng_v*


PNet Trigger:

HLT_DoublePNetTauhPFJet30_Medium_L2NN_e ta2p3_v*

Why Taus?


 Hadronically decaying Taus and Pions have very similar detector signatures.

semanticscholar.org

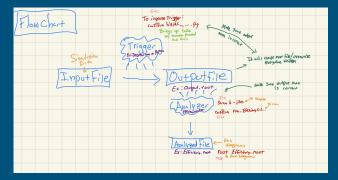
- The requirements triggers are looking for are very similar.
 - ➤ Hence DeepTau!!

My Project Phases

Phase 1: How to impose triggers on simulations?

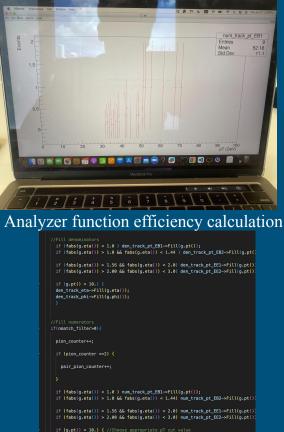
Run trigger over Monte Carlo
 (MC) simulation input files and calculate efficiencies.

TrigReport			Modules in	Path: HLT_I	DoubleMediur	mDeepTauPFTauHPS30_L2NN_eta2p1_OneProng_v6
TrigReport	Trig	Bit#	Visited	Passed	Failed	Error Name
TrigReport	1	0	500	500	0	0 hltTriggerType
TrigReport	1	1	500	500	0	0 hltGtStage2Digis
TrigReport	1	2	500	500	0	
TrigReport	1	3	500	500	0	0 hltOnlineMetaDataDigis
TrigReport	1	4	500	500	0	0 hltOnlineBeamSpot
TrigReport	1	5	500	33	467	0 hltL1sDoubleTauBigORWithLowMass
TrigReport	1	6	33	33	0	0 hltPreDoubleMediumDeepTauPFTauHPS30L2NNeta2p1OneProng
TrigReport	1	7	33	33	0	0 hltOnlineBeamSpotDevice
TrigReport	1	8	33	33	0	0 hltSiPixelClustersSoA
TrigReport	1	9	33	33	0	0 hltSiPixelClusters


$$Efficiency = \frac{\# of Passed Events}{Total Events}$$

					•••	
TrigReport	1	204	29	29	0	0 hltFixedGridRhoProducerFastjetAllTau
TrigReport	1	205	29	29	0	0 hltHpsPFTauBasicDiscriminatorsForDeepTau
TrigReport	1	206	29	29	0	0 hltHpsPFTauBasicDiscriminatorsdR03ForDeepTau
TrigReport	1	207	29	29	0	0 hltHpsPFTauDeepTauProducer
TrigReport	1	208	29	29	0	0 hltPFTau1ProngHPS
TrigReport	1	209	29	29	0	0 hltHpsSelectedPFTausMediumDitauWPDeepTau30
TrigReport	1	210	29	29	0	0 hltHpsL1JetsHLTDoublePFTauMediumDitauWPDeepTauMatch30
TrigReport	1	211	29	13	16	0 hltHpsDoublePFTau30MediumDitauWPDeepTauL1HLTMatched
TrigReport	1	212	13	13	0	0 hltBoolEnd

DeepTau trigger run over MC simulation input files.

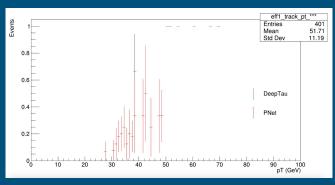

Phase 2: How to analyze results and graph Function Output efficiencies?

Run analyzer over output file and create python function to graph analyzed output file's efficiency data.

Visual file flow chart

Graphing function CMSSW 14 0 8 > src > Efficiency > TrigTools > test > 🌩 Efficiency.pv > ... ✓ import ROOT outputFile1 = "Efficiency DeepTau.root" location1Num = "EfficiencyCalculator/num_track_pt_EB1" location1Den = "EfficiencyCalculator/den track pt EB1" def graphEfficiencies (outputFolder1, locationNum1, locationDen1); c = ROOT.TCanvas()f = R00T.TFile(outputFolder1) histNum1 = f.Get(locationNum1) histDen1 = f.Get(locationDen1) histNum1.Divide(histNum1, histDen1, 1,1,"B") histNum1.Sumw2() histNum1.SetName("eff1 track pt EB1") histNum1.SetLineColor(ROOT.kRed) histNum1.Draw("E1") input("<Hit Return To Close>") graphEfficiencies (outputFile1.location1Num, location1Den)

num_track_eta->Fill(g.eta()); num_track_phi->Fill(g.phi());


occupancy phi eta all->Fill(g.eta(),g.phi());

Phase 3: How to compare two different trigger efficiencies?

Create new function that plots two trigger

efficiencies on one graph.

outputFile1 = "Efficiency_DeepTau.root"
location1Num = "EfficiencyCalculator/num_track_phi"
location1Den = "EfficiencyCalculator/den_track_phi"

outputFile2 = "Efficiency_PNet.root"
location2Num = "EfficiencyCalculator/num_track_phi"
location2Den = "EfficiencyCalculator/den_track_phi"

def graphEfficiencies (outputFolder1, outputFolder2, locationNum1, locationDen1, locationNum2, locationDen2):

c = ROOT.TCanvas()

f = R00T.TFile(outputFolder1)

histNum1 = f.Get(locationNum1)
histDen1 = f.Get(locationDen1)

print(histNum1)

d = R00T.TFile(outputFolder2)

histNum2 = d.Get(locationNum2)
histDen2 = d.Get(locationDen2)

print(histNum2)

eff1 = R00T.TEfficiency(locationNum1,locationDen1)

histNum1.Divide(histNum1, histDen1, 1,1,"B")
histNum1.Sumw2()

histNum1.SetName("eff1_track_phi'

histNum2.Divide(histNum2, histDen2, 1,1,"B")
histNum2.Sumw2()

histNum2.SetName("eff2_track_pt_***")

histNum1.SetName("eff1_track_phi")

histNum2.Divide(histNum2, histDen2, 1,1,"B")
histNum2.Sumw2()

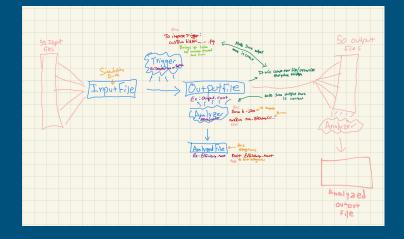
histNum2.SetName("eff2_track_pt_***")

histNum1.SetLineColor(R00T.kGreen+3)
histNum2.SetLineColor(R00T.kRed)

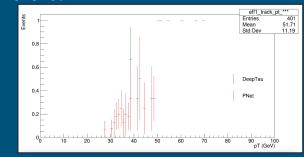
overall = ROOT.THStack(

overall.Add(histNum1)
overall.Add(histNum2)

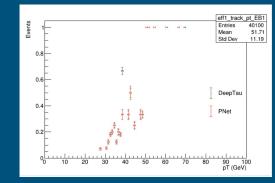
leg = B007.TLegend(.73,.32,.97,.53)
leg.SetBorder5ize(0)
leg.SetFill(Color(0)
leg.SetFill(Style(0)
leg.SetTextFont(42)
leg.SetTextFont(42)
leg.SetTextise(0.835)
leg.AddEntry(histNum_,"Pket", "Pket")


c.cd()
histNum1.Draw("E1")
histNum2.Draw("E1, same")
lcg.Draw()
c.SaveA8("PoecoTauPNet ImprovedEfficienciesPhi.pno"))

input("<Hit Return To Close>")


praphEfficiencies (outputFile1, outputFile2, location1Num, location1Den, location2Num, location2Den)

Phase 4: How to get more data?

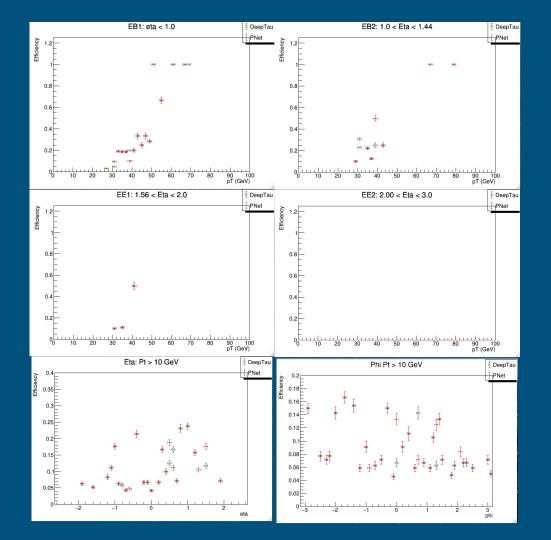

To shrink uncertainty bars, use CondorJobs to increase the computing power. We must:
 Run trigger over 50 input files
 Run analyzer over 50 output files

Before:

After:

Results

DeepTau


- ✤ Overall Efficiency: 3.9%
- ✤ PT Distribution:

ParticleNet

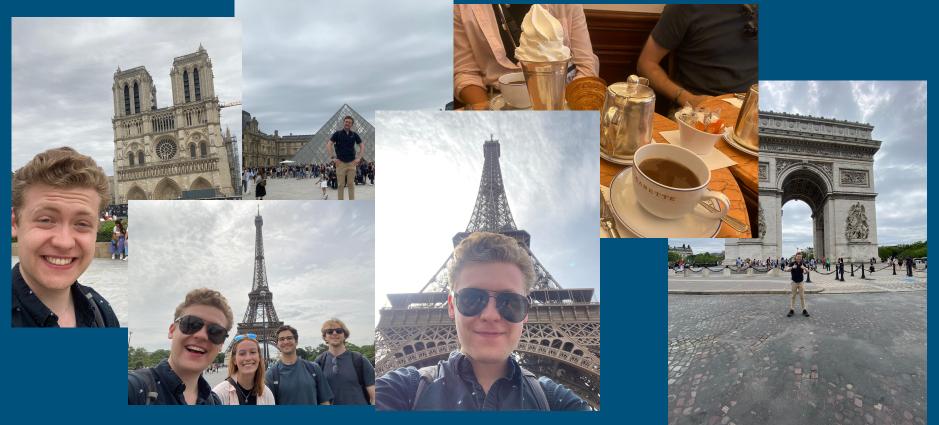
- ♦ Overall Efficiency: 4.1%
- ✤ PT Distribution:

Continued

EB1: Eta < 1.0 EB2: 1.0 < Eta < 1.44 EE1: 1.56 < Eta < 2.0 EE2: 2.00 < Eta < 3.0 Eta: Pt > 10 GeV Phi Pt > 10 GeV

Phase 5: Next Steps

- Developing a New Trigger Algorithm?
- Combining ParticleNet and Hadron Plus Strips (HPS) to create a worthy DeepTau replacement.
- Would another next step be using offline reconstruction.


Acknowledgements

Special Thanks to: **Riccardo Salvatico** Debabrata Bhowmik CMS Collaboration CERN **UM-CERN REU** National Science Foundation University of Michigan Pacific University

My Adventures!!

Paris, France

Zürich, Switzerland

Bonne Maman:

Milan, Italy

Interlaken/Schilthorn, Switzerland