

Jet Flavour Classification with Graph Neural Networks

Gabriella Pesticci | Kenyon College

Dr. Conor Henderson, Dr. Nate Grieser | University of Cincinnati

August 7, 2024

Motivation

Jet Hadronization

- p-p collisions at LHC produce quarks and gluons which hadronize due to QCD confinement
- The long lifetime of *b*-jets creates a characteristic secondary vertex
- We need to reconstruct the event and identify the original particle

Goal:

- Identify if jets are produced by *b*-quarks or not
- Utilize deep learning to accurately classify the jets in our data

Application:

- *b*-jet selection: $h \rightarrow bb$, top quarks, Z + jets, ...
- *b*-jet veto: WW, Z + jets, Higgs decays, ...

Veto

Graph Neural Networks (GNNs)

<u>GitHub</u>

- GNN Advantages
 - Variable number of nodes and edges
 - Able to capture complex relationships and represent our system

- Message Passing
 - Node information aggregated from neighboring nodes
 - Target node is updated
 - Learn features of neighbors

Graph Construction

- 1 graph = 1 jet
- 1 node = 1 daughter
- Fully connected edges
- Nodes vary between graphs
- Features: jet-level and daughter-level kinematics

Data Preparation

Dataset

- 600k fully reconstructed events
- Dijet simulation, leading jet
- 80:20 training and testing split

Truth Matching

 Monte Carlo simulations to select signal (*b*-jets) and background (not *b*-jets)

Jet Selection

• Cuts on pT and η

Truth Matching		
Signal Data	Background Data	
MC Match = 1 $MC Jet EfB > 0.6$	$\begin{array}{c} \text{MC Match} = 1\\ \text{MC Jet EfB} < 0.6 \end{array}$	
	MC Jet EfD < 0.6	

 $\begin{array}{l} \textbf{Selection Requirements} \\ 20 \ \text{GeV} < p_T < 50 \ \text{GeV} \\ 2.2 < \eta < 4.4 \end{array}$

Node Features

Jet Features

- Top-level jet kinematics
- Duplicated to each node

Daughter Features

• Kinematics unique to each daughter in the jet

SV Features

- Secondary vertex tagging variables
- Jet-level duplicated to each daughter

Jet Features	Daughter Features
Eta	E
pT	\mathbf{pT}
	ID
	pX
SV Tagging	pY
fdrMin	pZ
ptSvrJet	Eta
nTrk	Phi
nTrkJet	\mathbf{Q}
drSvrJet	IP
absQSum	IPCHI2
m	IPraw
mCor	NNe
fdChi2	NNk
ipChi2Sum	NNp
tau	NNpi
\mathbf{Z}	NNmu
pT	Chi2
	QoverP
	trackX
	trackY
	trackZ
	trackVX
	trackVY
	trackVZ
	CaloNeutralEcal
	CaloNeutralHcal2Ecal
	CaloNeutralE49
	CaloNeutralPrs

GNN Architecture

	False Positive Rate	Efficiency
Veto	0.1880	0.85
Ť	0.1154	0.80
	0.0662	0.75
	0.0306	0.70
+	0.0102	0.65
Selection	0.0050	0.60

Comparing to current SV tagger:

- At 60%, similar FPR
- Ability to go to higher efficiency

LHCb-PAPER-2015-016

Feature Ablation:

 Remove one feature at a time and compare predictions

Features with Importance > 0.25

Feature	Importance
Jet PT	2.680280
Daughters trackVZ	2.049136
SVtag pt	1.886200
Daughters IPCHI2	1.600275
Daughters NNmu	1.378289
SVtag mCor	1.236778
Daughters E	1.106416
Daughters pT	1.063479
Daughters pZ	0.972586
SVtag ipChi2Sum	0.692827
SVtag m	0.494002
SVtag fdChi2	0.477104
Daughters CaloNeutralEcal	0.457462
Daughters trackZ	0.388335
Daughters CaloNeutralHcal2Ecal	0.341928
Daughters CaloNeutralPrs	0.305089
Daughters CaloNeutralE49	0.298509

Conclusion

Summary

- First LHCb GNN jet tagger
- GNNs are desirable tools for jet tagging
- *b*-jets have SV which allow for improved identification
- Data processing: TM, selection, and graph creation
- Similar performance already to current SV tagger
- Flexible for physics scenarios

Next steps

- Apply to *b* vs *c*, *c* vs light (+ fat jets w/ HF jets inside)
- Migrate to Run 3 samples and retrain
- Integrate into Moore/ HLT2 HF jet selections
- Move to UC GPUs for further training → allow for faster turn around and larger training sample

Physics Applications

Veto	Selection
WW	$\mathrm{h} ightarrow b ar{b}$ asymmetry
WZ	$h \rightarrow c\bar{c}$ asymmetry
ZZ	top quark measurements
Z + jets	Z + jets
$\rm h \rightarrow WW$	$h \rightarrow cx$ analysis

Acknowledgements

I would like to thank Dr. Conor Henderson and Dr. Nathan Allen Grieser for their mentorship and guidance this summer, as well as Dr. Simon Akar for his valuable input. Additionally, I would like to acknowledge the University of Michigan REU Program and the CERN Summer Student Program for their support.

8 August 2024

Bain, Reggie. "Jets Aren't Just a Game of Tag Anymore." *ParticleBites*, 19 Feb. 2017, www.particlebites.com/?p=4007.

"Graph Neural Network (GNN)." SEON, 10 Nov. 2023, seon.io/resources/dictionary/graph-neural-network-gnn.

Graph Neural Network Jet Flavour Tagging with the ATLAS Detector, cds.cern.ch/record/2811135/files/ATL-PHYS-PUB-2022-027.pdf.

Hussein, Omar. "Graph Neural Networks Series: Part 4: The GNNS, Message Passing & over-Smoothing." *Medium*, The Modern Scientist, 17 May 2023, medium.com/the-modern-scientist/graph-neural-networks-series-part-4-the-gnns-message-passing-over-smoothing-e77ffee523cc.

Identification of Beauty and Charm Quark Jets at Lhcb - Arxiv, arxiv.org/pdf/1504.07670.pdf.

"Introduction to Jets." ATLAS Software Documentation, atlassoftwaredocs.web.cern.ch/AnalysisSWTutorial/obj_jet_intro/.

"Measurement of Inclusive and Differential Cross Sections for W + W – Production in Proton-Proton Collisions at \sqrt{s} = 13.6 TeV." *CMS*, cms-results.web.cern.ch/cms-results/public-results/publications/SMP-24-001/index.html.

"Measurements of Production Cross Sections of WZ and Same-Sign WW Boson Pairs in Association with Two Jets in Proton-Proton Collisions At ." ArXiv, 4 May 2020, cds.cern.ch/record/2716981/.

Nagai, Yoshikazu. B-Tagging in Atlas, indico.cern.ch/event/242419/contributions/520667/attachments/412165/572722/B-tag2012.pdf.

Vacavant, Laurent. ATLAS Results on H(125) Fermion (Bb) Decays: Observation of Hbb Decays, indico.ijclab.in2p3.fr/event/4754/contributions/15547/subcontributions/1336/attachments/13169/15826/\Hbb-HHunting2018-LV_FINAL.pdf.

home.cern

Particles Present in Jets

Graph Representations

Node Features

- [N_{nodes}, N_{features}]
- Tensor representing features for each node

Edge Index

- [2, *N_{edges}*]
- Graph connectivity

Truth Labels

• One label per graph

Batching

- Multiple graphs are batched together
- Parallel processing in single forward pass
- Batch size = 64

GNN Layers – PyTorch Geometric

SAGEConv

- Aggregates information from neighbors mean
- $x'_i = W_1 x_1 + W_2 \cdot \operatorname{mean}_{j \in \mathcal{N}(i)} x_j$

LayerNorm

- Normalize inputs across all features independently
- $y = \frac{x E[x]}{\sqrt{Var[x] + \epsilon}} * \gamma + \beta$

ReLU

- Introduces non-linearity
- $R(z) = \max(0, z)$

Dropout

- Zero elements with probability, p
- Scale by factor of $\frac{1}{1-p}$

Global Add Pooling

- After convolutional layers, add outputs
- $r_i = \sum_{n=1}^{N_i} x_n$

Linear

- Reduce dimensionality of outputs
- $y = xA^T + b$

Binary Cross Entropy Loss (with sigmoid layer)

- Computes difference between prediction and truth labels
- $\ell(x, y) = L = \{l_1, \dots, l_N\}^{\mathsf{T}}, l_n = -w_n[y_n \cdot \log \sigma(x_n) + (1 y_n) \cdot \log(1 \sigma(x_n))]$

AdamW Optimizer

- Minimizes loss function stochastic gradient descent
- Separates weight decay from gradients

Loss and Optimization

Binary Cross Entropy Loss

$$\ell(x, y) = L = \{l_1, \dots, l_N\}^{\mathsf{T}}, l_n$$

= $-w_n [y_n \cdot \log \sigma (x_n) + (1 - y_n) \cdot \log(1 - \sigma(x_n))]$

AdamW

- Stochastic gradient descent method
- Separates weight decay from gradients
- Better regularization than Adam

AdamW Algorithm

```
egin{aligned} \mathbf{input} : \gamma(\mathrm{lr}), \ eta_1, eta_2(\mathrm{betas}), \ 	heta_0(\mathrm{params}), \ f(	heta)(\mathrm{objective}), \ \epsilon \ \mathrm{(epsilon)} \ \lambda(\mathrm{weight\ decay}), \ amsgrad, \ maximize \end{aligned}
eta(\mathrm{maximize}): m_0 \leftarrow 0 \ \mathrm{(first\ moment)}, \ v_0 \leftarrow 0 \ \mathrm{(second\ moment)}, \ \widehat{v_0}^{max} \leftarrow 0 \end{aligned}
```

```
\begin{array}{l} \textbf{for }t=1 \ \textbf{to} \ \dots \ \textbf{do} \\ \textbf{if }maximize: \\ g_t \leftarrow -\nabla_\theta f_t(\theta_{t-1}) \\ \textbf{else} \\ g_t \leftarrow \nabla_\theta f_t(\theta_{t-1}) \\ \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1} \\ m_t \leftarrow \beta_1 m_{t-1} + (1-\beta_1) g_t \\ v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g_t^2 \\ \widehat{m_t} \leftarrow m_t / (1-\beta_1^t) \\ \widehat{v_t} \leftarrow v_t / (1-\beta_2^t) \\ \textbf{if }amsgrad \\ \widehat{v_t}^{max} \leftarrow \max(\widehat{v_t}^{max}, \widehat{v_t}) \\ \theta_t \leftarrow \theta_t - \gamma \widehat{m_t} / (\sqrt{\widehat{v_t}}^{max} + \epsilon) \\ \textbf{else} \\ \theta_t \leftarrow \theta_t - \gamma \widehat{m_t} / (\sqrt{\widehat{v_t}} + \epsilon) \end{array}
```

$\mathbf{return}\, \theta_{\mathbf{t}}$

Hyperparameter Tuning

Random Search

- Set ranges of hyperparameters
 - Number of Convolutional Layers $(0 \rightarrow 5) = 4$
 - Hidden Channels (64, 128, 256) = 128
 - Dropout Rate $(0.1 \rightarrow 0.5) = 0.2$
 - Weight Decay $(10^{-6} \rightarrow 10^{-2}) = 10^{-4}$
- Choose best performance: highest validation accuracy
- Repeat with narrower range of hyperparameters and more epochs

