
Graph-based Task Scheduling on
Heterogeneous Resources

Josh Ott
with Mateusz Fila and Benedikt Hegner (EP-SFT)
North Carolina State University

August 8, 2024



Introduction



Motivation

Directed acyclic graphs (DAG)!
• Data processing jobs in LHC
experiments can be described
with DAGs

• Algorithms transform data,
going from any number of
input nodes to any number of
output nodes

• These graphs are to be
scheduled in parallel on
heterogeneous resources

Algorithm 1

Data 2Data 1

Algo. 2 Algo. 3 Algo. 4

Data 3 Data 4 Data 5

...

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 1 / 14



Project specifics

Our goals

• Develop a demonstrator framework to meet LHC requirements
• Design it with heterogeneous computing in mind from the start
• Write it in Julia using the Dagger.jl package

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 2 / 14



Data Dependencies



Treatment of data

Algorithm and data nodes treated equally – not ideal!

Algo. Data
DTask Algo.DTask

(?)
...

Dagger requires this to recognize dependence.

The data generated was also meaningless :(

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 3 / 14



Treatment of data

Algorithm and data nodes treated equally – not ideal!

Algo. Data
DTask Algo.DTask

(?)
...

Dagger requires this to recognize dependence.

The data generated was also meaningless :(

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 3 / 14



Graph structures

A graph with topology

Algo.

Data

Data

Algo.

Algo.

would actually get treated like

Algo. Data

Algo.

Algo.

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 4 / 14



DataObjects with metadata

To utilize the graph metadata, we package everything in structs
mutable struct DataObject

data
size::UInt

end

function algorithm(inputs..., outputs...)
for output in outputs

output.data = zeros(Int8, output.size)
end

end

We populate data nodes with these objects prior to scheduling
algorithms.

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 5 / 14



DataObjects with metadata

To utilize the graph metadata, we package everything in structs
mutable struct DataObject

data
size::UInt

end

function algorithm(inputs..., outputs...)
for output in outputs

output.data = zeros(Int8, output.size)
end

end
We populate data nodes with these objects prior to scheduling
algorithms.

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 5 / 14



All data as arguments

Rather than using the function output, treat all outputs as mutable
arguments.
Dagger.spawn_datadeps() do

for v in vertices
Dagger.@spawn algorithm(

In.(inputs)...,
Out.(outputs)...)

end
end

Now our data is meaningful and properly handled!

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 6 / 14



All data as arguments

Rather than using the function output, treat all outputs as mutable
arguments.
Dagger.spawn_datadeps() do

for v in vertices
Dagger.@spawn algorithm(

In.(inputs)...,
Out.(outputs)...)

end
end
Now our data is meaningful and properly handled!

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 6 / 14



Datadeps revisited

This was great until we noticed some strange behavior. The source
code confirms:
function spawn_datadeps(f::Base.Callable)

“At the end of executing f, spawn_datadepswillwait for all
launched tasks to complete, rethrowing the first error, if any.
The result of f will be returned from spawn_datadeps.”

Asynchronicity is crucial, so this will not do. Come back to it later!

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 7 / 14



Datadeps revisited

This was great until we noticed some strange behavior. The source
code confirms:
function spawn_datadeps(f::Base.Callable)

“At the end of executing f, spawn_datadepswillwait for all
launched tasks to complete, rethrowing the first error, if any.
The result of f will be returned from spawn_datadeps.”

Asynchronicity is crucial, so this will not do. Come back to it later!

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 7 / 14



CPU Crunching



Initial conditions

Previously, algorithm nodes slept for a fixed amount of time to
emulate computation.
function mock_algorithm(id, data...)

println("Algorithm for vertex $(id)")
sleep(1)

return id
end

We’d like
• runtime to be realistic, and for
• workers to be busy – not sleeping.

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 8 / 14



Initial conditions

Previously, algorithm nodes slept for a fixed amount of time to
emulate computation.
function mock_algorithm(id, data...)

println("Algorithm for vertex $(id)")
sleep(1)

return id
end
We’d like
• runtime to be realistic, and for
• workers to be busy – not sleeping.

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 8 / 14



Callable structs

Simple: create algorithms as callable structs so workers don’t need
to read from the graph.

struct MockupAlgorithm
name::String
runtime::Float64

end

function (alg::MockupAlgorithm)(args...)
println("Executing $(alg.name)")
sleep(alg.runtime)

return alg.name
end

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 9 / 14



Crunching

Now we just need workers to be actually busy. How can we waste a
deliberate amount of time?

Find prime numbers!

This is the approach that GAUDI (the current framework) uses.

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 10 / 14



Crunching

Now we just need workers to be actually busy. How can we waste a
deliberate amount of time?

Find prime numbers!

This is the approach that GAUDI (the current framework) uses.

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 10 / 14



Calibration

Dagger offers shards for distributing objects scoped to specific
workers.

coefficients = Dagger.@shard calibrate()

When this gets passed in a Dagger.@spawn call, the shard is
resolved in the worker process.

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 11 / 14



Calibration

Dagger offers shards for distributing objects scoped to specific
workers.

coefficients = Dagger.@shard calibrate()

When this gets passed in a Dagger.@spawn call, the shard is
resolved in the worker process.

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 11 / 14



Algorithm with crunching

Now our algorithm looks like this: we pass through the calibration
coefficients and find prime numbers to keep the worker busy.
function (alg::MockupAlgorithm)(args...; coefs)

println("Executing $(alg.name)")
crunch_for_seconds(alg.runtime, coefs)

return alg.name
end

• Accuracy of cruncher varies with environment
• Could be smarter about calibration

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 12 / 14



Algorithm with crunching

Now our algorithm looks like this: we pass through the calibration
coefficients and find prime numbers to keep the worker busy.
function (alg::MockupAlgorithm)(args...; coefs)

println("Executing $(alg.name)")
crunch_for_seconds(alg.runtime, coefs)

return alg.name
end

• Accuracy of cruncher varies with environment
• Could be smarter about calibration

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 12 / 14



Project Structure



Organization

Before:

data/
examples/
graphs_scheduling/
src/
test/

parsing_graphs/
src/
test/

utilities/
functions.jl
auxiliary_funcs.jl

Much of the previous changes
involved rewriting the existing code,
but the larger structure also needed
reworking.
• Could only be run through an
“example”

• Sources split across directories
• “Utilities” served essential
functions

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 13 / 14



Organization

Before:

data/
examples/
graphs_scheduling/
src/
test/

parsing_graphs/
src/
test/

utilities/
functions.jl
auxiliary_funcs.jl

After:

bin/ (an executable!)
data/
deps/
docs/
examples/
scripts/
src/ (now with a module!)

FrameworkDemo.jl
...

test/ (unit tests!)
runtests.jl

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 13 / 14



Summary



Summary

Accomplished:
• Once Dagger updates spawn_datadeps, the new data
dependency system should be good to go

• Algorithms now keep workers properly busy for approximately
the amount of time we want, though it could be improved

• Framework now much easier to work with!

Looking ahead:
• Rich logging features
• GPU support
• Control flow graphs

Thank you everyone! :)

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 14 / 14



Summary

Accomplished:
• Once Dagger updates spawn_datadeps, the new data
dependency system should be good to go

• Algorithms now keep workers properly busy for approximately
the amount of time we want, though it could be improved

• Framework now much easier to work with!

Looking ahead:
• Rich logging features
• GPU support
• Control flow graphs

Thank you everyone! :)

Josh Ott Graph-based Task Scheduling on Heterogeneous Resources 14 / 14


	Introduction
	Data Dependencies
	CPU Crunching
	Project Structure
	Summary

