Cyclotron Detector Development for \bar{p} Transport at BASE-STEP

Matthew Everette

Clemson University

August 8, 2024

Matthew Everette (Clemson University) [BASE-STEP](#page-17-0) August 8, 2024 1/18

4 0 8

 QQ

Baryon Asymmetry

- It is an observational fact that our universe is almost completely made up of matter.
- Both the standard model and our current understanding of cosmology fail to explain the lack of antimatter in the universe – the baryon asymmetry problem.
- CPT violating processes, if they exist, could provide a solution to baryon asymmetry.
- The Baryon-Antibaryon Symmetry Experiment (BASE) performs high-precision measurements of the charge-to-mass ratio of protons and antiprotons as well as the antiproton g-factor to test CPT invariance.
- Antiprotons produced at CERN's Antimatter Decelerator (AD) are captured and measured in BASE's four Penning trap setup.
- BASE has measured the proton-to-antiproton charge-to-mass ratio with a precision of 16-parts-per-trillion.

 Ω

BASE-STEP

Currently, the high level of magnetic noise in the AD hall is the bottleneck for increasing measurement precision.

- **BASE-STEP** (Symmetry Tests in Experiments with Portable antiprotons) is developing a portable antiproton trap to solve the problem.
- Antiprotons will be loaded into the trap in the AD hall and driven to an off-site laboratory with less magnetic noise.

- A quadrupole electric field and an axial magnetic field confine particles.
	- In the trap, particles exhibit three modes of oscillation: magnetron motion, axial motion, and modified cyclotron motion.

• The invariance theorem relates the oscillatory frequencies of these modes to a particle's free cyclotron frequency, ν_c :

$$
\nu_c^2 = \nu_-^2 + \nu_z^2 + \nu_+^2
$$

• Precise measurements of ν_c are necessary for both charge-to-mass ratio and g-factor measurements.

Non-Destructive Particle Detection

- A particle oscillating in the trap produces an image-current in the traps electrodes.
- This image-current is fed through the detector, which consists of an RLC resonator followed by an amplifier circuit.
- There are both axial detectors and cyclotron detectors.
	- Magnetron motion is typically measured with the axial detector through sideband coupling.
- While the cyclotron detector can be used for particle detection, it is mainly used to cool the particle's cyclotron motion.

- This summer, I have been working to develop a new cyclotron detector for BASE-STEP.
- The experiment's two cyclotron detectors are highly coupled, distorting their frequency responses.
	- This results in both a larger cooling time constant τ and a lower signal to noise ratio (SNR).

• The goal of my new detector implementation is to reduce τ and increase the SNR by optimizing the resonator design, as well as improving the detector's tuning range by designing a more robust varactor setup.

- The resonator is an inductor consisting of Cu wire wound around a toroidal PTFE core, all of which is placed inside of a Cu housing.
- Measurements of the resonator's resonance frequency ν_0 allow for its inductance L and capacitance C to be determined.

 $1e7$

 Ω

Frequency (Hz)

The Amplifier

- The amplifier circuit consists of two field effect transistors (FETs).
	- The first acts as a common-source amplifier and the second acts as a source follower.
- Measurements were done to determine the amplifier's gain G, the amplifier's equivalent input noise e_n , and optimal gate voltages G_1 and G_2 for operation.

Matthew Everette (Clemson University) [BASE-STEP](#page-0-0) August 8, 2024 9/18

The Varactor Board

- The varactor board allows the detector's resonance frequency to be tuned.
	- Varactors are a type of reverse-biased diode that have a voltage tunable capacitance.
- The varactor circuit was placed in parallel with the resonator to maximize the detector's tuning range.

 Ω

Results

- Values of $L = 3.7\mu$ H and $C = 8.2p$ F were measured from the resonator.
- The detector was characterized at both room temperature (RT) and at 11K.
- The following table summarizes the measurement results:

- The measured values of L, Q, and e_n correspond to a 25% lower cooling time constant τ and an approximate SNR of ~16dB at low operating temperatures.
- The tuning range of ~540kHz is a substantial improvement over the two current detectors' tuning ranges of ~150kHz and ~80kHz.
- Moreover, all this improvement was done with only a \sim 10% decrease in the detector's Q factor.
- Next step: installing the detector!

 QQ

Travel Pics

 \leftarrow \Box

 \leftarrow \leftarrow \leftarrow \mathcal{A}

É

Matthew Everette (Clemson University) [BASE-STEP](#page-0-0) August 8, 2024 13/18

 $\mathbb{R}^d \times \mathbb{R}^d$

重

Supplementary Slides

٠ D.

K ロ ▶ K 倒 ▶

重

Important Equations

$$
Q = \frac{R_{\text{eff}}}{2\pi\nu_0 L}
$$

$$
\tau = \frac{m}{R_{\text{eff}}} \frac{D^2}{q^2}
$$

$$
\text{SNR} \approx \frac{\sqrt{4k_BTR_{\text{eff}}}}{e_n}
$$

Matthew Everette (Clemson University) [BASE-STEP](#page-0-0) August 8, 2024 15/18

重

 299

イロメ イ部メ イヨメ イヨメー

(Low Temp) Amplifier Measurements 1

 $1e-9$ 3.0 $\overline{7}$ 2.5 6 2.0 e_n (V/sqrt(Hz)) 1.5 $G_2(W)$ 1.0 0.5 0.0 -0.5 $-1.25 - 1.20 - 1.15 - 1.10 - 1.05 - 1.00 - 0.95 - 0.90 - 0.85$ G_1 (V)

∢ □ ▶ ⊣ *□* **▶**

э

Þ \sim

 \mathcal{A} .

(Low Temp) Amplifier Measurements 2

Note: It appears that the amplifier's working point shifted between the coarse and fine scan, likely because the amplifier was not yet fully thermalized.

4 D F ∢●●

(Low Temp) Varactor Measurements

4 **D**

 299

Þ