WP3 Joint Meeting Task 3.1 Physics design of the positron target and capture system

I. Chaikovska on behalf of the WP3 team

29 August 2024

Ongoing (after FCC week)

- The studies focus on a 2.86 GeV electron drive-beam energy.
- Layout alignment between the FLUKA model of the positron capture system and beam dynamics simulation model.
- Chicane and 2 RF structures were introduced in the CL simulations for better understanding, optimization studies and more reliable results.
- With a new baseline: 4 RF structures per klystron instead of 2 → the gradient should be lower ~14 MV/m → more structures in CL? Effect of gradient on overall performance. Any RF configuration in the capture linac is allowed to maximize the yield.
- Flux Concentrator-based layout: studies for SuperKEKB (FC+BC) matching device.
- Solenoid vs. quadrupolar focusing after chicane (or at which energy ?). Input on power consumption is essential.
- Studies on a new layout with smaller aperture RF structures and higher field SC solenoid in CL.

Layout: AMD + 7 structures + Chicane + 2 structures + analytical formulae

- Coordinate in RF Track simulation: z=0 @target exit ٠
- Entrance of capture linac: •

z=346 mm/305 mm (HTS/FC)

- First Type 1 solenoid (center): 346 mm + 214 mm ٠
- RF Track: s0=0 @target exit, ٠ s1=(0.346+22.68+1.53+6.48) m
- Length of tuning solenoid: 72 mm •
- Length of shielding: 105 mm ۲

77.5 mm

346 mm

- Center location of tuning solenoid: 204 mm ٠
- Reference time: Bunch6d @ [0,0,0,0,17.5,10000]

- Incoming electron beam energy: 2.86 GeV •
- $100 \text{ Hz} \times 4 \text{ bunches}$
- Cut windows: $\Delta E = \pm 2\%$, $\Delta t = 20$ mm/c
- Two gradients for CS: **14 MV/m** and 20 MV/m ullet
- Tuning solenoid: 204 mm
- Phases after chicane: for max. yield/energy 253

Some updates

- FLUKA model: shielding between the HTS and first cavity
 - From the beam dynamics point of view there is no dependence between the shielding location and the accepted yield.
 - We agreed with Barbara to place the <u>shielding</u> <u>after the tuning solenoid</u> as a starting point.
 - The tuning solenoid updated location is :
 - <u>z = 204 mm</u> (z =0 is target exit.)

- Capture Linac gradient scan
 - For each gradient values the phases can be optimized easily.
 - No strong dependence between the gradient and the accepted yield (<u>w/o chicane in</u> <u>simulations)</u>
 - The only change would be increasing or decreasing the number of structures to continue using **V0 chicane**.

Update on FC-based layout

High-Temperature Superconducting (HTS) solenoid designed by PSI => HTS:FCC (submitted to mid-term review)

Originally designed by KEK for the SuperKEKB => FC:SKEKB-KEK Under consideration for the FCC-ee : with and w/o BC

Designed by KEK for the ILC (Y. Enomoto) => FC:ILC-KEK Under consideration for the FCC-ee

8/29/2024

Update on FC-based layout

Y. Wang

	FCC - HTS	SuperKEKB (with BC) - FC	SuperKEKB (w/o BC) - FC	ILC - FC
Aperture of matching device	$2r = 30 \sim 60 \text{ mm}$	$2r = 7 \sim 52 \text{ mm}$	$2r = 7 \sim 52 \text{ mm}$	2r = 12~64 mm
Positron yield @ target	7.09	7.09	7.09	7.09
Beam size x/y (mm) @ s1	7.52/7.47	6.24/6.11	6.48/6.34	7.92/7.7.46
Average total energy (MeV) @ s1	310.25	324.47	330.44	332.96
Energy spread (MeV) @ s1	34.35	23.46	25.28	36.11
Positron yield @ s1	3.75	1.40	1.02	1.23
Bunch length (mm) @ s1 (Accepted by cut window)	3.04	2.59	2.72	2.99
Positron yield @ PL (ΔE: 2%, Δt: 20 mm/c)	3.01 (2.9)	1.26	0.87	0.86
Primary bunch charge (nC)	4.49	10.71	15.52	15.70
Target deposited power (kW)	1.17	2.8	4.06	4.1
PEDD (J/g)	6.70	16.02	23.20	23.47
Emittance x/Emittance y (Normalized) (mm.rad) @ PL	9.63/10.52	7.08/6.68	6.62/6.06	9.57/8.57
Energy spread (%) @ PL	0.71	0.57	0.59	0.62

Latest Capture Linac layout

Capture Linac:

- 6 RF structures (2a = 60mm)
- Gradient = 14 MV/m
- <u>Results:</u>
 - Losses observed only at the beginning of CL.
 - Efficiency @end of CL ~ 0.61
 - Normalized emittance: ~ 15 mm rad

Chicane:

- V0 4 dipoles 3D field map used by Mattia and now by Yongke.
- e- stopper optimized by Yongke
- <u>Results:</u>
 - Efficiency @end of chicane ~ 0.56
 - Normalized x emittance: up to ~40 mm rad

<u>S1 (8 RF structures):</u>

- 2 RF structures added/simulated to optimize the CL **Results:**
 - Emittance oscillates between 18 and 12 mm rad
 - Efficiency @end of S1 ~ 0.51.

F. Alharthi

Summary for the latest baseline layout

[233, 232, 229, 269, 273, 278] 6 cavities + chicane + 2 cavities + analytical formula	Values	
Matching device peak magnetic field (@target)	HTS: 14.94 (11.77) T	
Matching device aperture	2r = 30~60 mm	
Positron yield @ target	7.09	
Average total energy (MeV) @CL	190	
Peak energy (MeV)@CL	240	
Positron yield @s1 (@ 8 cavities)	3.61	
Positron yield @ PL (ΔΕ: 2%, Δt: 20 mm/c)	2.93	
Primary bunch charge (nC)	4.61	
Target deposited power (kW)	1.2	
PEDD (J/g)	6.89	
Emittance x/Emittance y (normalized) (mm.rad) @PL	9.6/10.1	
Energy spread (%) @PL	0.70	
Bunch length (mm)	2.99	

Positron Capture Linac studies

• The baseline design :

HTS solenoid matching device, solenoidal focusing with **Bz=0.5 T**, 5 RF structures with 14 MeV/m and aperture of \emptyset 60 mm, the SKEKB type chicane.

- \rightarrow Ne⁺/Ne⁻ @PL (Δ E: 2%, Δ t: 20 mm/c) is 3.25
- <u>Alternative layouts of the positron capture linac:</u>
 - HTS solenoid matching device, 5 RF structures with 14 MeV/m and aperture of Ø40 mm, SC solenoidal focusing with Bz=1 T upstream of the SKEKB type chicane and 2.5 T downstream.
 → Ne⁺/Ne⁻ @PL (ΔE: 2%, Δt: 20 mm/c) is 3.1 (beam losses in chicane ~5%)
 - 2. The same layout but with **quadruple focusing** downstream the 5th RF structure (4 quads upstream the chicane and 6 downstream the chicane).

 \rightarrow Ne⁺/Ne⁻ @PL (Δ E: 2%, Δ t: 20 mm/c) is 2.55

FODO period is shorter than the section length, so it seems that the focusing channel should start with two FODO cells along the RF section.

Next steps

- Define the priorities (to finish technical work by December 2024).
- **Consolidation of the baseline design of the capture linac:** *number of RF structures and gradient.*
- Choice between solenoidal vs. quadrupole focusing after chicane (or at which energy ?
- In case of solenoid focusing, *more realistic magnetic fieldmap* (solenoid-chicane) is needed for more reliable results. Riccardo provided a model in Maxwell3D. Simulation/studies to be conducted.
- Further studies on a new layout with smaller aperture RF structures and higher field SC solenoid in CL: *feasibility of the SC solenoid to be investigated.*

Latest CL layout

Beam transport

Latest Capture Linac layout Efficiency in the chicane

